

The Qweak Experiment at Jefferson Lab: A Direct Measurement of the Proton's Weak Charge

Jie Pan University of Manitoba

(for the Qweak Collaboration)

Overview

- Qweak determines Q^p_W and sin²θ_W to high precision via measuring parity-violation asymmetry (~300 ppb) in e-p elastic scattering at low Q² (0.025 GeV²)
 Deviation from the SM predictions would be a sign of new physics
- Deviation from the SM predictions would be a sign of new physics
- First results based on 4% of total dataset published in PRL 111, 141803 (2013)
- Experimental apparatus described in NIM A781, 105 (2015)
- The performance of the Compton polarimeter described in Phys. Rev. X 6, 011013 (2016)
- Analysis of full dataset is continuing, results expected late this fall
- Several ancillary measurements were taken to constrain background contributions and to make corrections

Outline

- Qweak's Physics Motivation
- Experimental Apparatus
- First Results
- Status of Current Analysis
- Ancillary Measurements

Search for Physics beyond the Standard Model

• <u>The Standard Model (SM)</u>

- A successful low energy effective theory of more fundamental physics, yet incomplete

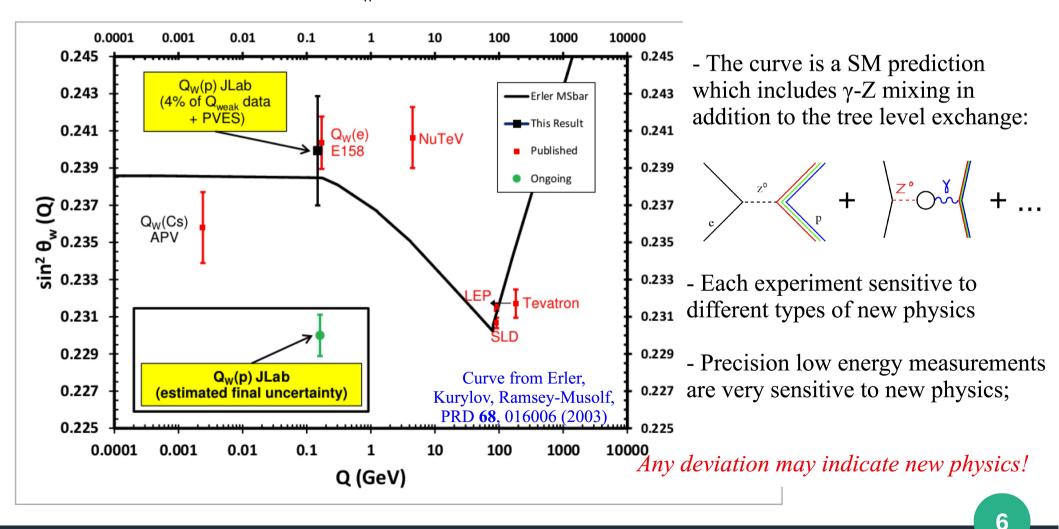
• <u>Two complimentary approaches</u> in testing SM and searching for new physics - Direct searches for new particles at high energy (Tevatron, LHC)

- Indirect searches to test the SM via precision measurements at low energy (PVES, including Qweak)

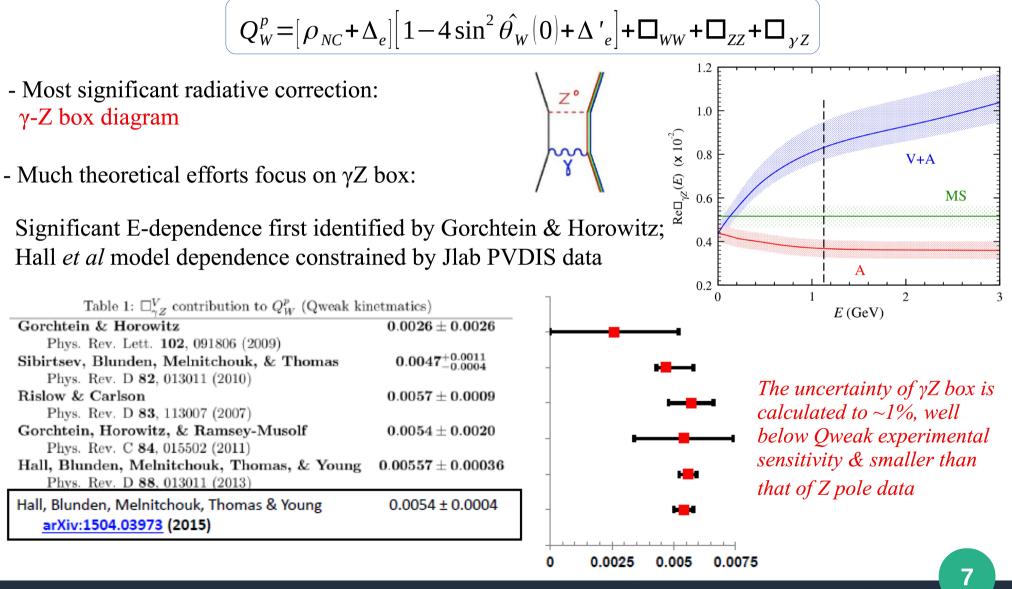
- <u>The Qweak experiment</u> at Jefferson Lab
 - Elastic scattering of electron beam from proton target $(\vec{e}+p \rightarrow \vec{e}+p)$
 - Measure significantly suppressed SM observable $(Q_w(p))$ to high precision
 - Sensitive search for new physics at TeV scale

Proton's Weak Charge in the Standard Model

- Weak charges neutral current analog to the electric charges
- Firm predictions have been made on Q^{p}_{W} in the Standard Model


Particle e u	Electric charge -1 $+\frac{2}{3}$	Weak vector charge $(\sin^2 \theta_W \approx \frac{1}{4})$ $Q_W^e = -1 + 4 \sin^2 \theta_W \approx 0$ $-2C_{1u} = +1 - \frac{8}{3} \sin^2 \theta_W \approx +\frac{1}{3}$ $-2C_{1d} = -1 + \frac{4}{3} \sin^2 \theta_W \approx -\frac{2}{3}$	The accidental suppression of Q^p_{W} in the SM makes it sensitive to new physics!
a p(uud) n(udd)	$-\frac{1}{3}$ +1 0	$-2C_{1d} = -1 + \frac{1}{3} \sin^2 \theta_W \approx -\frac{1}{3}$ $Q_W^p = 1 - 4 \sin^2 \theta_W \approx 0.07$ $Q_W^n = -1$	$Q_W^p = -2(2C_{1u} + C_{1d})$ $Q_W^n = -2(C_{1u} + 2C_{1d})$
e EM p		e WNC P	<i>Qweak is very sensitive</i> <i>to weak vector coupling</i> <i>of light quarks</i>

- At tree level, $Q_{W}^{p} = 1 - 4\sin^{2}\theta_{W}$ (θ_{W} - weak mixing angle)


- Qweak's accurate measurement of Q^{p}_{W} will lead to a high precision test of $\sin^{2}\theta_{W}$ at low energy ($Q^{2} \ll M_{Z}$)

Running of $\sin^2\theta_{W}$

The "running" feature of $\sin^2\theta_w$ is well known in the SM

Electroweak Radiative Corrections

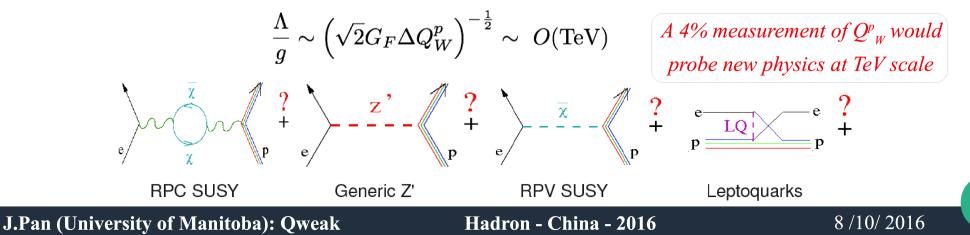
J.Pan (University of Manitoba): Qweak

Hadron - China - 2016

8 /10/ 2016

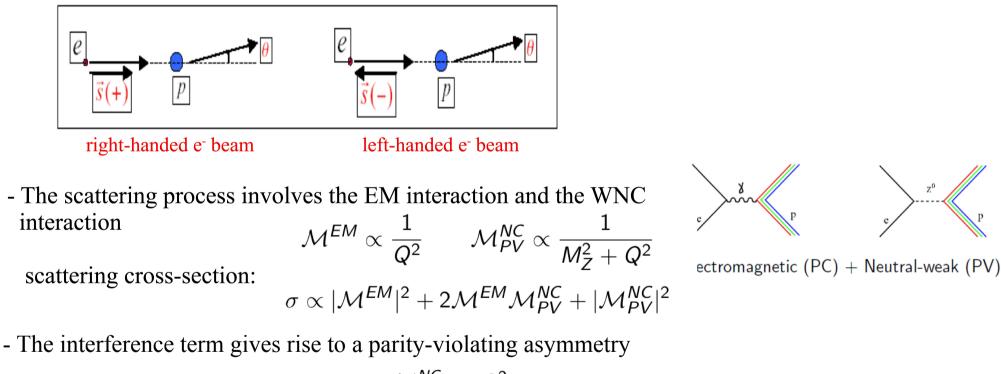
Sensitivity to New Physics

- For low-energy electroweak tests, the parity-violating e-q scattering can be expressed as a four-fermion contact interaction


e, N e, N e, N e, N e, N e, N

8

- Suppose some new physics adds a contact term to the PV e-q Lagrangian, with coupling constant, g, and mass, Λ : Erler et al. PRD 68, 016006 (2003)


$$\begin{aligned} \mathcal{L}_{e-q}^{PV} &= \mathcal{L}_{SM}^{PV} + \mathcal{L}_{New}^{PV} \\ &= -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q \end{aligned}$$

- The sensitivity to new physics Mass/Coupling ratio can be estimated

Accessing Q^p_W from PV Electron Scattering

- Scatter electrons of opposite helicity from an unpolarized target

$$A_{PV}(p) = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{\mathcal{M}_{PV}^{NC}}{\mathcal{M}^{EM}} \propto \frac{Q^2}{M_Z^2} \quad \text{when } Q^2 \ll M_Z^2 \qquad \sim -200 \text{ ppb}$$

- In the limit of $Q^2 \rightarrow 0$ and $\theta \rightarrow 0$, the leading order term for elastic scattering contains Q^p_{W}

$$A_{PV} = \frac{-G_F Q^2}{4 \pi \alpha \sqrt{2}} [Q_W^p + B(\theta, Q^2) Q^2]$$

Extraction of the Proton's Weak Charge

- Qweak determines Q^p_w by measuring the PV asymmetry in elastic scattering of longitudinally polarized electrons on proton.

- At Qweak kinematics $(Q^2 \rightarrow 0 \text{ and } \theta \rightarrow 0)$: The Q^p_W term dominates the total asymmetry (~2/3)

$$A_{PV} = \frac{-G_F Q^2}{4 \pi \alpha \sqrt{2}} [Q_W^p + B(\theta, Q^2) Q^2] \qquad A_0 \equiv \frac{-G_F Q^2}{4 \pi \alpha \sqrt{2}}$$

hadron structure: contains $G_{EM}^{\gamma} \& G_{EM}^{z}$ form factors, constrained by other expts

Divide out A_0 and use the reduced asymmetry to express:

$$\overline{A_{PV}^{p}} = \frac{A_{PV}}{A_{0}} = Q_{W}^{p} + Q^{2} B(Q^{2})$$

- The hadronic term could be extracted from a global fit of previous PVES data (SAMPLE, HAPPEX, G0, PVA4); Intercept of reduced asymmetry gives access to Q_{W}^{P} .

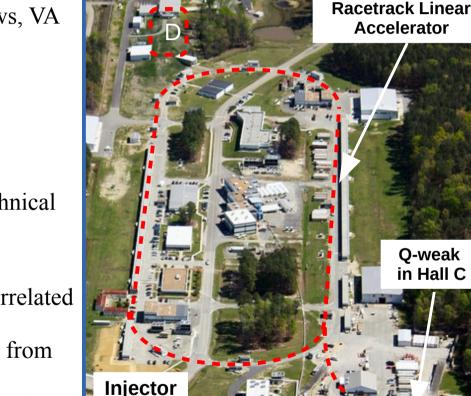
[R.D. Young et al. PRL 99, 122003]

Hadron - China - 2016

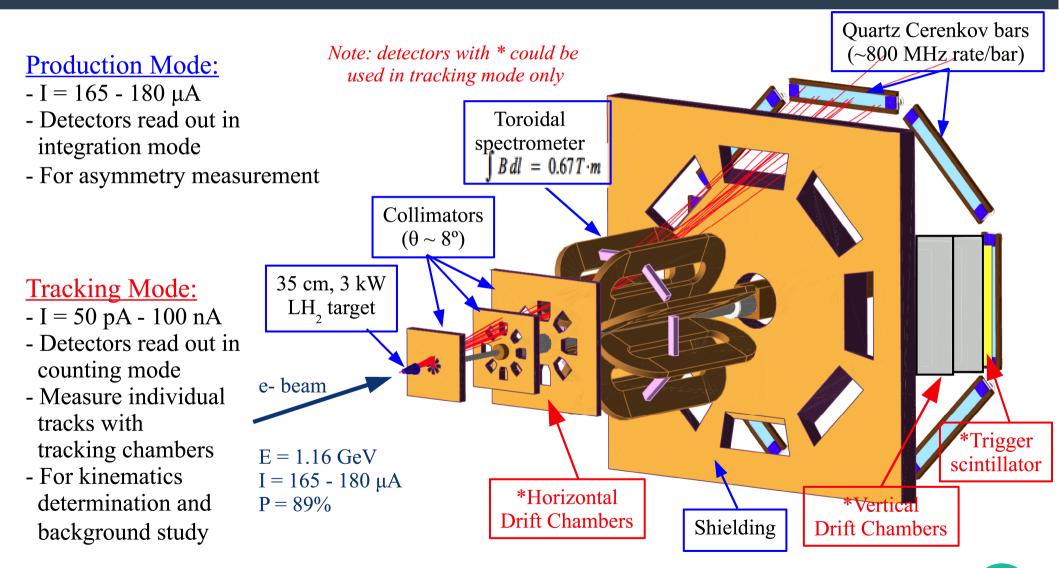
The Qweak Experiment at JLab

- Qweak ran in Hall C at Jefferson Lab, Newport News, VA
- Data taken over one year of beam
 - Commissioning run: Jan Feb 2011
 - Run1: Feb May 2011
 - Run2: Nov 2011 May 2012
- Qweak was well designed to meet the following technical challenges:

Statistics (high rates)


- High polarization,
- High beam current
- High powered targets
- Large acceptance

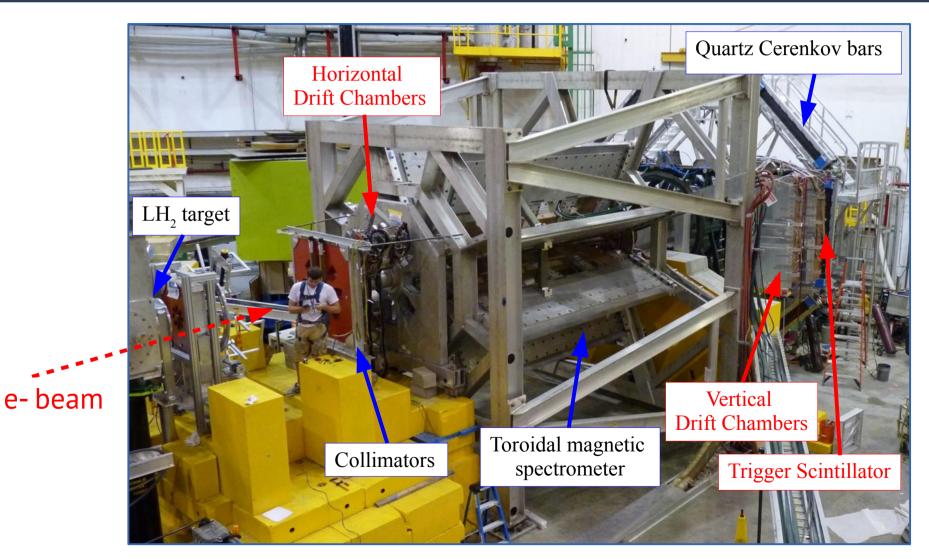
Low noise


- Electronics
- Target density fluctuations
- Detector resolution

Systematics

- Minimized helicity correlated beam properties
- Separate backgrounds from elastic events
- High precision polarimetry
- Precise Q² determination

Qweak Apparatus


[T. Allison et al. Nuclear Instruments and Methods in Physics Research A 781 (2015) 105-133]

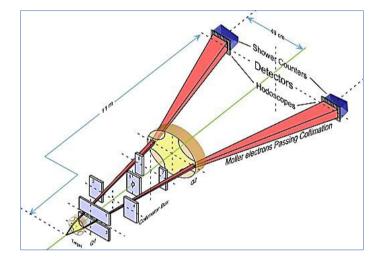
J.Pan (University of Manitoba): Qweak

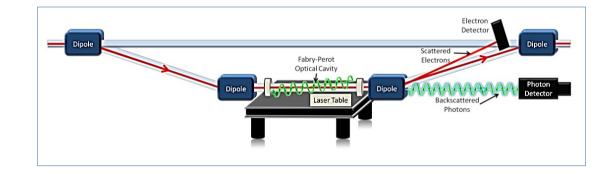
Hadron - China - 2016

8 /10/ 2016

Qweak During Installation

[T. Allison et al. Nuclear Instruments and Methods in Physics Research A 781 (2015) 105-133]


J.Pan (University of Manitoba): Qweak


Hadron - China - 2016

Beam Polarimetry

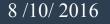
• Measure beam polarization to <1% using two independent devices

["The Qweak Experimental Apparatus," NIM A 781, 105 (2015) & A. Narayan et al. Phys. Rev. X 6, 011013 (2016)]

<u>Møller polarimeter:</u> $\vec{e} + \vec{e} \rightarrow e + e$

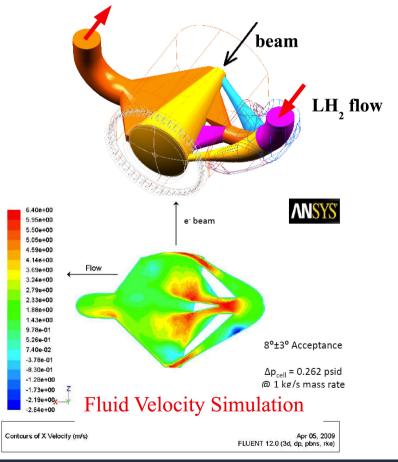
- electrons scatter from polarized Fe foil
- invasive measurement
- limit to low current

<u>Compton polarimeter:</u> $\vec{e} + \gamma \rightarrow e + \gamma$

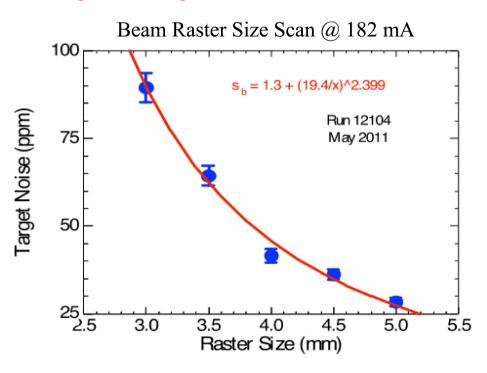

- electrons scatter from polarized laser beam
- detect both recoil electron and photon
- continuous measurements at optimal beam currents

J.Pan (University of Manitoba): Qweak

Beam Polarimetry


Run 2 data: (I = 180 uA, E = 1.16 GeV)Systematic uncertainties: Møller Compton 92 Polarization (%) - Compton: dP/P = 0.59%90 - Møller: dP/P = 0.84%88 Two techniques agree to <0.8%86 84 82 Normalization uncertainty 23000 24000 25000 (0.42% Compton & 0.65% Møller) Run number P_{Møller} +/- stat (inner) +/- point-to-point syst. (0.53%) P_{Compton} +/- stat (inner) +/- point-to-point syst. (0.41%)

A. Narayan et al. Phys. Rev. X 6, 011013 (2016)

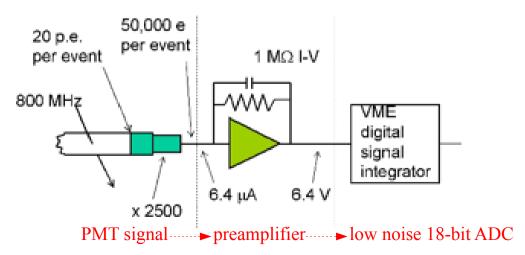


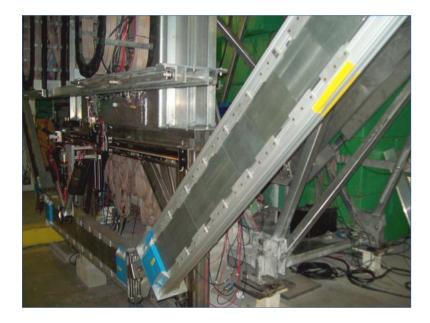
Target Design and Performance

- World's highest power cryotarget (~ 3 kW)
- Designed using computational fluid dynamics to minimize noise from density fluctuations

Target "boiling" noise studies

Target "boiling" made very small contribution (~ 47 ppm) to our asymmetry width (236 ppm)




J.Pan (University of Manitoba): Qweak

Main Detectors

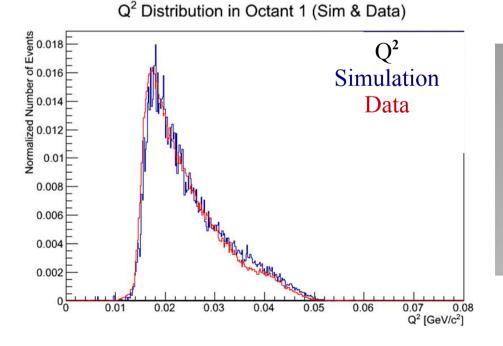
Pre-radiated main Cerenkov detectors:

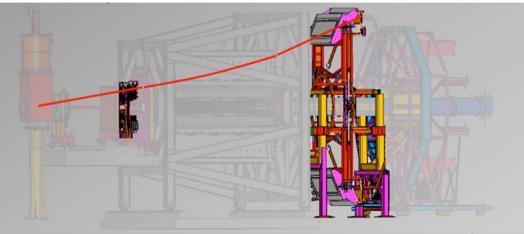
- Eight radiation-hard Quartz Cerenkov bars (2 m x 18 cm x 1.25 cm)
- Toroidal magnet focuses elastically scattered electrons onto each bar
- Azimuthal symmetry maximizes rates and reduces systematic uncertainties
- 2 cm thick Pb pre-radiator tiles installed to reduce low-energy backgrounds
- PMT signals recorded by low noise electronics

Measured profile in bottom octant

17

J.Pan (University of Manitoba): Qweak


Kinematics Determination

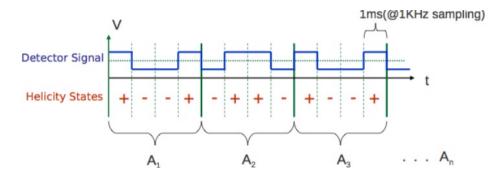

To determine Q², run tracking mode periodically:

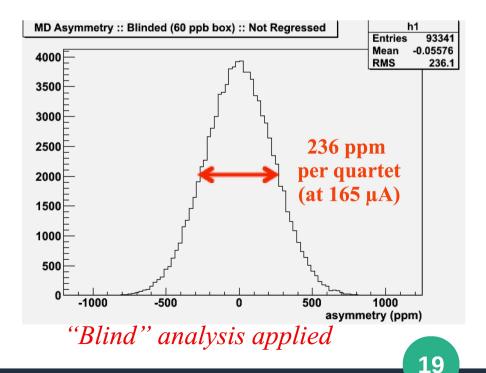
- Low current, $\sim 50 \text{ pA} 100 \text{ nA}$
- Use high resolution drift chambers before and after magnetic field
- Re-construct individual scattering events

Systematic studies:

- Correct for radiative effects in target with Geant4 simulations, benchmarked with tracking measurements (gas-target & solid targets)
- Correct for light-weighting effects in main detectors

J.Pan (University of Manitoba): Qweak


Signal Manipulation


- Helicity reversal at 960 Hz, pseudorandomly generated in +--+ or -++- quartet pattern
- Integrate detector signal (S) over each helicity state and normalized to beam charge (Q)

$$\mathbf{Y} = \mathbf{S} / \mathbf{Q}$$

- Calculate asymmetries for each quartet pattern

$$A = \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-}}$$

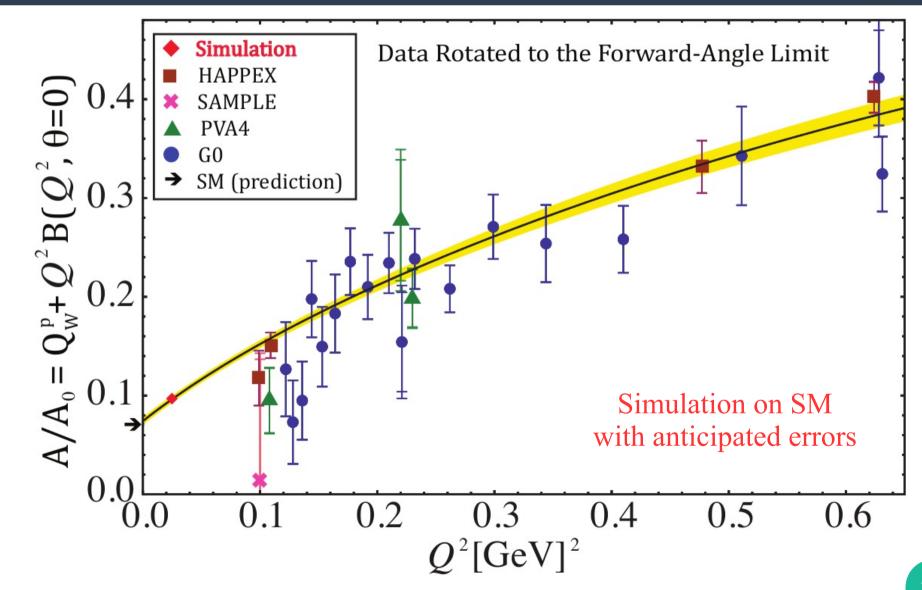
Constructing the Asymmetry

To obtain physics asymmetry, some corrections are needed

STEP 1:

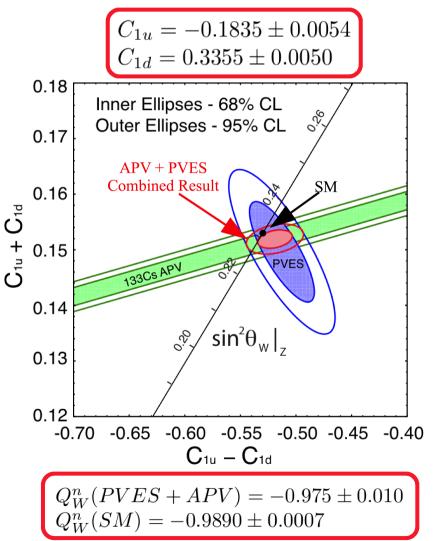
$$A_{msr} = A_{raw} + A_T + A_L + A_{reg}$$

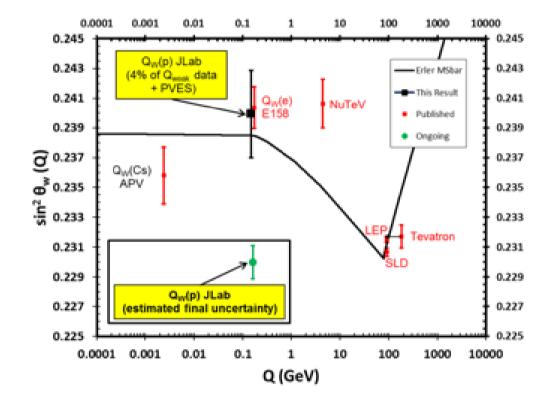
STEP 2:


$$A_{PV} = R_{tot} \frac{A_{msr}/P - \sum_{i=1}^{4} f_i A_i}{1 - f_{tot}}$$

- A_T remnant transverse asymmetry
 A_L potential non-linearity in PMT
 A_{reg} helicity-correlated false asymmetry due to beam parameter variations
- R_{tot} = includes radiative corrections and correction for light-variation P – beam polarization
- Background corrections: Al windows, neutrals, scattering from beamline, inelastic scattering
 - f_i background dilution factor
 - A_i background asymmetry

First Results


Published Run 0 results: PRL **111**, 141803 (2013) $A_{ep}/A_0 = Q_W^p + Q^2 B(Q^2, \theta = 0) , \qquad A_0 = -\frac{G_F Q^2}{4\pi \alpha \sqrt{2}}$ (1/25th of total dataset, taken during commissioning period) Extract Q^p_w via global fit of world PVES data $A_{PV} = -279 \pm 35$ (statistics) ± 31 (systematics) ppb Kinematics: $Q_W^p(PVES) = 0.064 \pm 0.012$ $Q_W^p(SM) = 0.0710 \pm 0.0007$ $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \ (GeV/c)^2$ $\langle E \rangle = 1.155 \pm 0.003 \text{ GeV}$ 0.05 0.1 0.15 0.25 0.2 0.3 This Experiment Data Rotated to the Forward-Angle Limit 6 G0 HAPPEX $A_{ep}/A_0 = Q_w^p + Q^2 B(Q^2, \theta =$ 0.4 HAPPEX SAMPLE -1 PVA4 SAMPLE G0 -2 PVA4 Asymmetry [ppm] SM (prediction) 0.3 Q-weak Qweak 0.2 (4% of data)0.1 -6 -7 0 0.0 0.1 0.2 0.5 0.6 0.3 0.4 Q2 [(GeV/c)2] $Q^2 [\text{GeV/c}]^2$ First determination of proton's weak charge in good agreement with Standard Model 21 J.Pan (University of Manitoba): Qweak Hadron - China - 2016 8 /10/ 2016


"Teaser" with Anticipated Final Errors

First Results

Improved precision on quark vector coupling

- First e-p elastic data point in the running plot - The full result will be the most precise determination below Z pole

23

J.Pan (University of Manitoba): Qweak

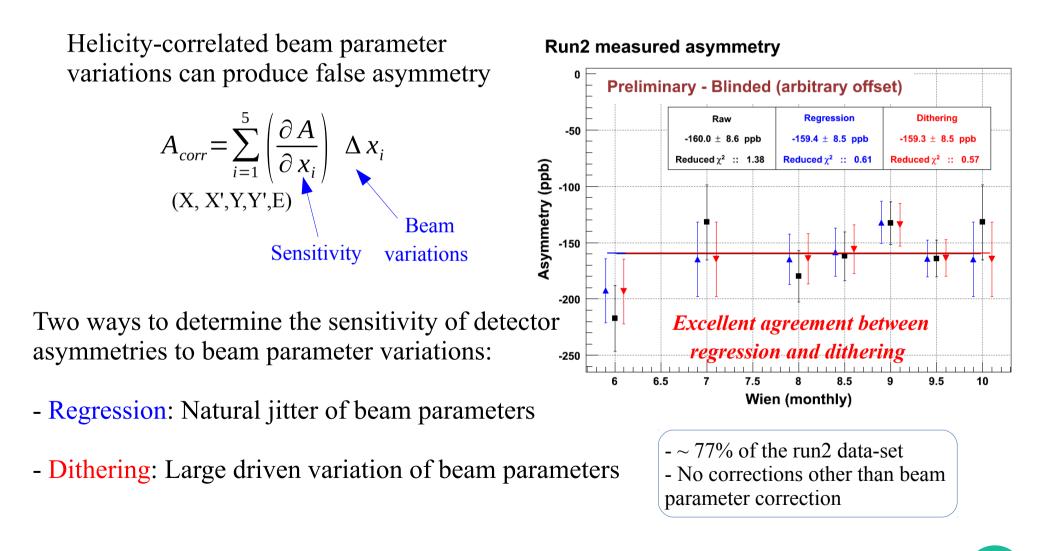
Corrections and Uncertainty from First Results

$$A_{PV} = R_{total} \left(\frac{\frac{A_{msr}}{P} - \sum_{i=1}^{4} A_i f_i}{1 - \sum_{i=1}^{4} f_i} \right)$$

Largest uncertainty contributions:

- False asymmetries due to helicity-correlated differences in beam parameters
- Backgrounds from beamline scattering
- Target windows contribution to asymmetry

Corrections and uncertainty table for Run 0 results


Correction Contribution Value (ppb) to ΔA_{ep} (ppb)

Normalization Factors Applied to A_{Raw}					
Beam Polarization $1/P$	-21	5			
Kinematics R_{tot}	5	9			
Bckgrnd Dilution $1/(1 - f_{tot})$	-7	-			

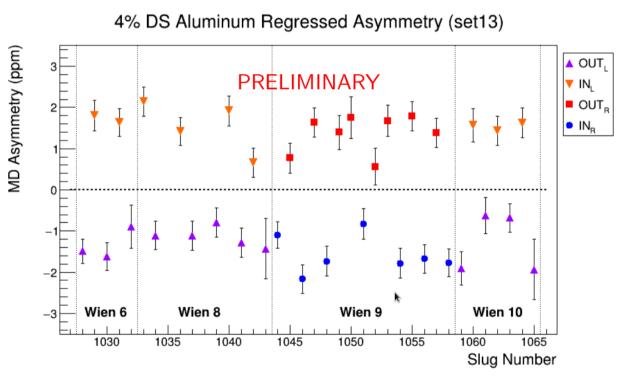
Asymmetry corrections

Beam Asymmetries κA_{reg}	-40		13				
Transverse Polarization κA_T	0		5				
Detector Linearity κA_L	0		4				
Backgrounds	$\kappa P f_i A_i$	$\delta(f_i)$	$\delta(A_i)$				
Target Windows (b_1)	-58	4	8				
Beamline Scattering (b_2)	11	3	23				
Other Neutral bkg (b_3)	0	1	< 1				
Inelastics (b_4)	1	1	< 1				

Beam Corrections

J.Pan (University of Manitoba): Qweak

Aluminum Target Window Backgrounds


Largest correction to Run 0 data (~ 60 ppb \rightarrow ~21%)

Dilution (f_{Al})

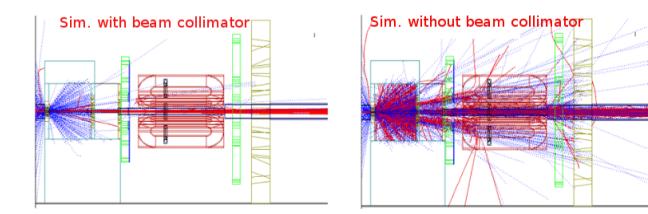
- 5 mil window, expected signal fraction ~ 3%
- Measured with empty target, corrected for effect using simulation and data driven models of elastic and QE scattering
- Recently reduced δf_{Al} contribution to ~2 ppb (~5 ppb in first result)

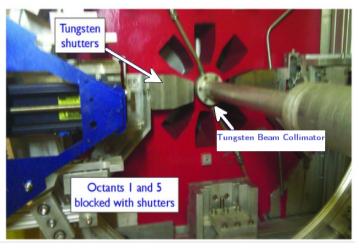
Asymmetry (A_{Al})

- Measured from thick Al target
- Preliminary uncertainty for A_{Al} :

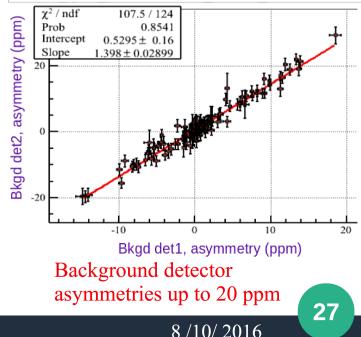
 \pm 72 (stat) \pm 34 (sys) \pm 26model ppb $\rightarrow \delta A_{ep}(A_{Al}) = f_{Al}A_{Al} \sim 2.5 \text{ ppb}$

Hadron - China - 2016

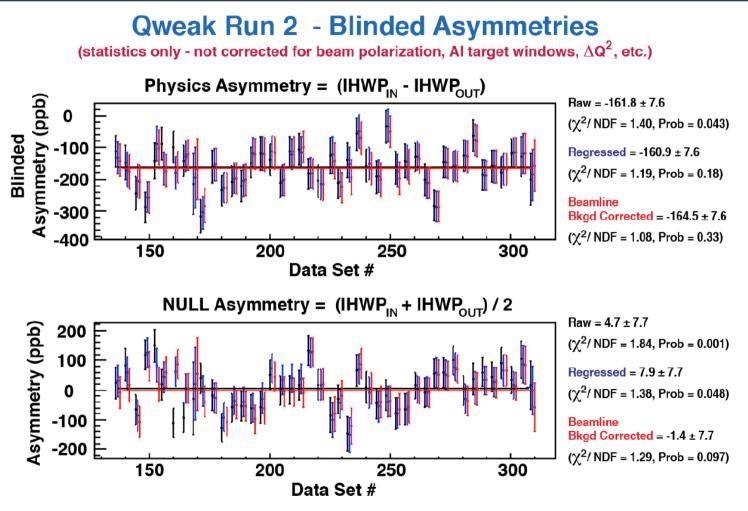

Beamline Backgrounds


Highest contribution to systematic uncertainty in first result

- Background caused by electron scattering on beamline or small tungsten beam collimator after target


- Tungsten shutters allowed direct measurement of the yield fraction by blocking octant 1 & 5 ($f_{b2} \sim 0.19\%$)

- The asymmetry was measured using background detectors close to beamline



Correlation between bkgd asymmetries, Run2

J.Pan (University of Manitoba): Qweak

Beamline Backgrounds

Inclusion of beamline background correction improves the statistical consistency of both the Physics and "NULL" asymmetry

J.Pan (University of Manitoba): Qweak

Hadron - China - 2016

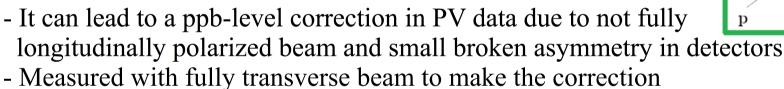
8 /10/ 2016

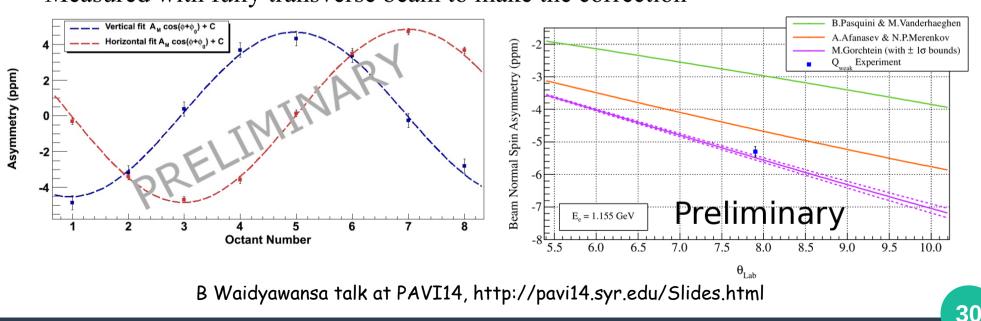
Ancillary Measurements

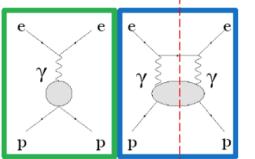
Qweak additional measurements are under analysis, including:

Parity violating asymmetry:

- Elastic ²⁷Al
- N→ Δ (E = 1.16 GeV, 0.877 GeV)
- Near W = 2.5 GeV(related to γZ box)
- Pion photoproduction (E = 3.3 GeV)


Parity conserving transverse asymmetry:


- Elastic e-p
- Elastic ²⁷Al, Carbon
- N→∆
- Moller
- Near W = 2.5 GeV
- Pion photoproduction (E = 3.3 GeV)

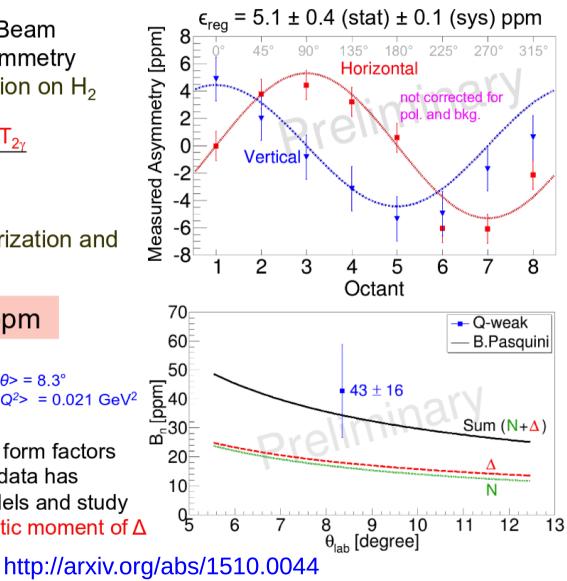

Transverse Asymmetry in e-p Elastic Scattering

- B_n is a parity conserving transverse asymmetry due to 2γ exchange

$$B_n = \frac{2T_{1\gamma} \times \Im T_{2\gamma}}{|T_{1\gamma}|}$$

Transverse Asymmetry in Δ Resonance

Q-weak has measured Beam Normal Single Spin Asymmetry (B_n) in the N-to- Δ transition on H_2


$$B_{n} = \frac{\sigma \uparrow - \sigma \downarrow}{\sigma \uparrow + \sigma \downarrow} = \frac{2 T_{1\gamma} \times Im T_{2\gamma}}{|T_{1\gamma}|}$$

After correcting for polarization and backgrounds

$$B_{\rm n} = 43 \pm 16 \, \rm ppm$$

at kinematics
•
$$\langle E \rangle$$
 = 1.16 GeV
• $\langle W \rangle$ = 1.2 GeV
• $\langle Q^2 \rangle$ = 0.021 GeV²

- Unique tool to study $\gamma^* \Delta \Delta$ form factors
- Q-weak along with world data has potential to constrain models and study charge radius and magnetic moment of Δ

Summary

- Qweak is a precision measurement of the proton's weak charge with the aim of searching for new PV physics at the TeV scale
- First published results (4% of Qweak data):
 - Measured the smallest and most precise e-p PV asymmetry

 $A_{ep} = -279 \pm 35 \text{ (stat) } \pm 31 \text{ (syst) ppb}$

- First determination of the proton's weak charge

 $Q_W^p(PVES) = 0.064 \pm 0.012$ $Q_W^p(SM) = 0.0710 \pm 0.0007$

- Extracted the quark couplings (C_{1u}, C_{1d}) and determined the neutron's weak charge

 $C_{1u} = -0.1835 \pm 0.0054$ $C_{1d} = 0.3355 \pm 0.0050$

 $Q_W^n(PVES + APV) = -0.975 \pm 0.010$ $Q_W^n(SM) = -0.9890 \pm 0.0007$

- Final results expected this fall
 - Statistical error \sim 5 times smaller, with reduced systematics
 - Many ancillary results under analysis

The Qweak Collaboration

Thank you!