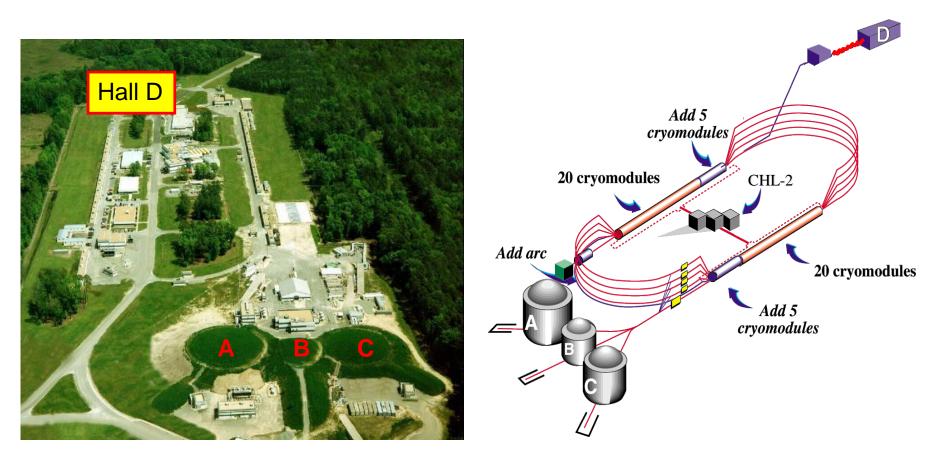


Hall D / GlueX Physics Program


A. Somov, Jefferson Lab for the GlueX collaboration

The 8th Workshop on Hadron Physics in China and Opportunities Worldwide, Wuhan, China, 8 – 11 August 2016

Outline

- GlueX detector in the experimental Hall D at Jefferson Lab
- Main physics goal of the GlueX experiment
- Detector overview
- Detector performance during commissioning in 2016
- Other experiments with the GlueX detector

CEBAF Upgrade to 12 GeV

- Upgrade CEBAF energy from 6 GeV to 12 GeV.
- New experimental Hall D with GlueX detector
 - photon beam (linear polarization)

Hall D Physics Program: Approved Experiments

Experiment	Name		Condition	Target
E12-06-102	Mapping the spectrum of light quark mesons and gluonic excitations with Linearly polarized photons	120		LH_2
E12-12-002 E12-13-003	A study of meson and baryon decays to strange final states with GlueX in Hall D		L3 trigger PID	LH ₂
E12-10-011	A precision measurement of the η radiative decay width via the Primakoff effect	79		LH ₂ LHe ₄
E12-13-008	Measuring the charged pion polarizability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ reaction	25		Sn
C12-14-004	Eta decays with emphasis on rare neutral	(130)	Upgrade	LH ₂
(conditionally	modes: The JLab Eta Factory experiment	(150)	Forward	
approved)	(JEF)		calorim.	

Hall D Physics Program

LOI	Name	Days	Condition	Target
LOI12-15-001	Physics with secondary K _L beam			LH ₂ , A
LOI12-15-006	Production ω mesons off nuclei			A
LOI12-16-001	An experimental test of lepton universality through Bethe-Heitler production of lepton pairs			Active H ₂
LOI12-16-002	Probing short-range nuclear structure and dynamics with real photons and nuclear targets at GlueX			LH ₂ , A
LOI12-16-002	Target helicity correlations in GlueX			C ₄ H ₉ OH

Workshops on GlueX Physics Program

 $K_{\rm L}$ Workshop, Jefferson Lab, Feb 1 – 3, 2016 Nuclear production with GlueX, Jefferson Lab, April 28-29, 2016

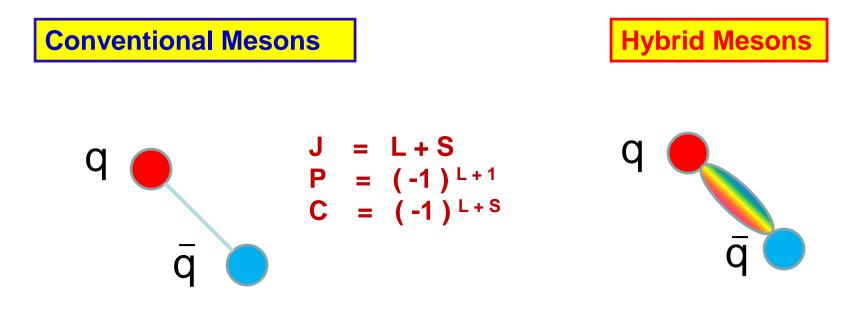
GlueX Collaboration in Hall D

- Arizona State
- Athens
- Carnegie Mellon
- Catholic University
- University of Connecticut
- Florida International
- Florida State
- George Washington
- Glasgow
- GSI
- Indiana University
- ITEP
- Jefferson Lab
- University Mass Amherst

- MIT
- MEPhI
- Norfolk State
- North Carolina A&T
- University North Carolina Wilmington
- Northwestern
- University of Regina
- Santa Maria
- Tomsk
- Yerevan Physics Institute
- College of William and Mary
- Wuhan University

International collaboration from 24 institutions **Two more groups are currently joining**

Hall D Timeline

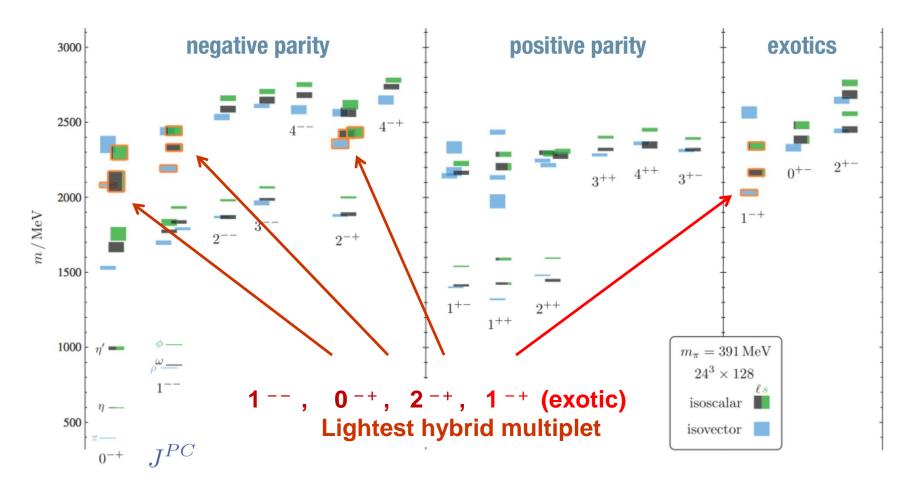

✓ First commissioning data in Fall 2014 / Spring 2015

- Beamline / detector commissioning
- Beam energy below 6 GeV
- Some liner polarization

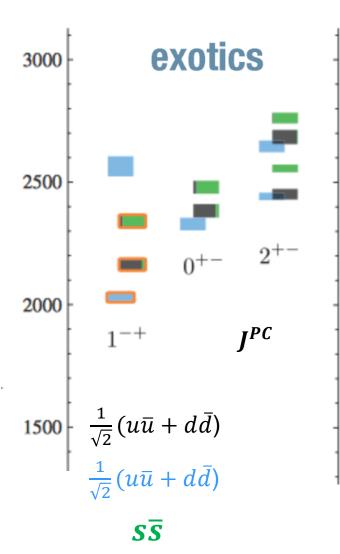
✓ Commissioning run in Fall 2015 / Spring 2016

- 12-GeV electron beam
- Linearly polarized photon beam
- Low luminosity (5 times smaller)
- GlueX commissioning completed
- Physics running: Fall 2016 Spring 2018
- PrimEx D Experiment: Fall 2018 (Plan)
- High intensity GlueX running: Starting in spring 2019 (Plan)
 - Upgrade kaon identification in 2018

Exotic Mesons



Excited gluonic field coupled to a qq pair can result in hybrid mesons with exotic J^{PC}


➢ Predicted by several models. Recent calculations using lattice QCD - constituent gluon with $J^{PC} = 1^{+-}$ and mass 1 - 1.5 GeV

Lattice QCD Predictions

Dudek et al. PRD 88 (2013) 094505

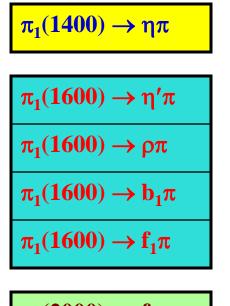
Lattice QCD Predictions

Mass predictions:

- 1^{-+} 2.0 2.4 GeV/c²
- $J^{PC} = 0^{+-} = 2.3 2.5 \text{ GeV/c}^2$
 - 2^{+-} 2.4 2.8 GeV/c²
- Lattice calculations predict light-quark hybrid mesons and with strange quark content
 - good identification of kaons required (GlueX PID upgrade)
- Search for mesons in many final states

Search Modes of Exotic Decays

JPC	Exotic Meson	Possible Decays
1 -+	π ₁ (1900) η ₁ (2100)	πρ, πb1, πf1, πη', ηa1 η f2, a2π, ηf1, ηη', π(1300) π
	$\eta_1'(2300)$	K[*]K , K ₁ (1270) K, K ₁ (1410) K, ηη'
2 +	b ₂ (2500) h ₂ (2500) h ₂ ' (2600)	$ωπ$, $a_2π$, $ρη$, $f_1ρ$, $a_1π$, $h_1π$, $b_1η$ $ρπ$, $b_1π$, $ωη$, $f_1ω$ $K_1(1270)$ K, $K_1(1410)$ K, K_2^* K, $φη$
0+-	$b_0(2400)$ $h_0(2400)$ $h_0'(2500)$	$π(1300) π, h_1 π, f_1 ρ, b_1 η$ $b_1 π, h_1 η$ $K_1(1270) K, K_1(1460) K, h_1 η$

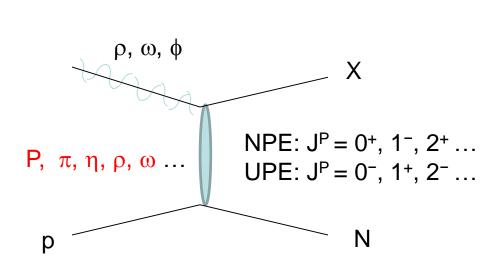

Multiparticle final states:

- (p,n) + 3π, 4π, 3πη, 4πη ...
- 70% of decays involve at least one π^0
- 50% more than two π^0

Experimental Status

Exotic mesons have been searched in several experiments: GAMS, VES, CBAR, E852, COMPASS, CLAS

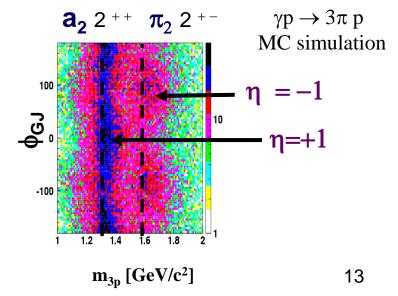
> Exotic Meson Candidate $(J^{PC} = 1^{-+})$



$\pi_1(2000) \to f_1 \pi$	
$\pi_1(2000) \to b_1\pi$	

Seen by several experiments. Interpretation unclear: dynamic origin, 4-quark state. Not a hybrid (?)

- First seen by VES, E852, COMPASS
- 3π controversial:
 - 3π not seen in photoproduction (CLAS)
- May be a hybrid
- Need more analysis and data
- Seen by E852 (but not seen by VES)
- Statistics is limited
- May be a hybrid
- Exotic meson candidates, but no strong evidence
- Reconstruct exotic mesons in many final state. More data are needed


Photoproduction of Exotic Mesons

Exchange particle		Final States	
Р	0 +	0 +- , 2 +-	b ⁰ , h, h'
π^0	0 -	2 +-	b ₂ ⁰ , h ₂ , h ₂ '
π^{\pm}	0 -	1-+	π_1^{\pm}
ω	1-	1-+	$\pi_1,\eta_1,\ \eta_1'$

□ t-channel exchange

- couple to photoproduction (via Vector Meson Dominance)
- Polarized photon beam helps to determine production mechanism (naturality)

GlueX Spectrometer: Design Requirements

• Optimized to detect multi-particle final states

• Hermetic, large/uniform acceptance for charged and neutral particles, good energy and momentum resolution

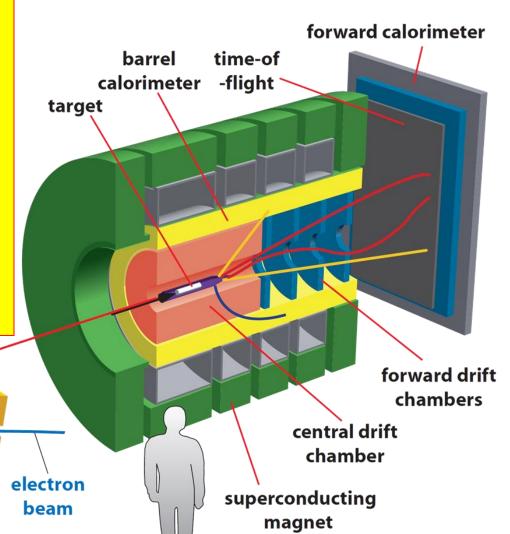
Tracks: $\sigma_p / p \sim 2 - 5 \%$ Photons: $\sigma_E / E = 6 \% / \sqrt{E} \oplus 1.6 \%$ Acceptance: $1^\circ < \theta < 120^\circ$

tagger magnet

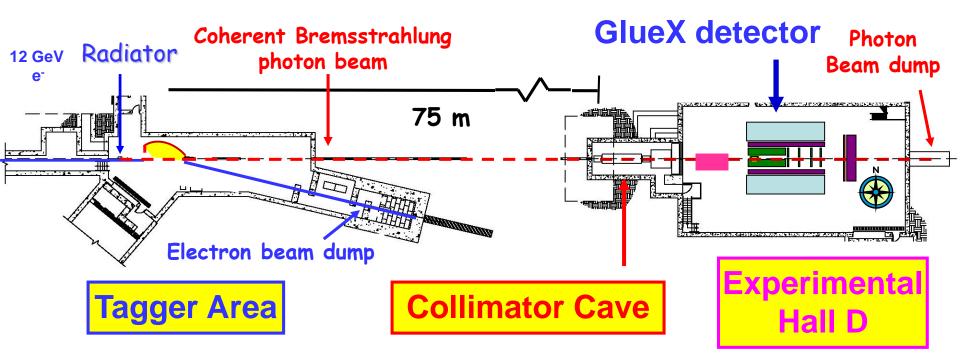
tagger to detector distance

is not to scale

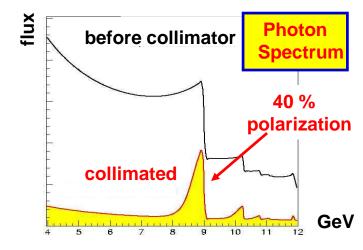
Operate with high-intensity polarized photon beams

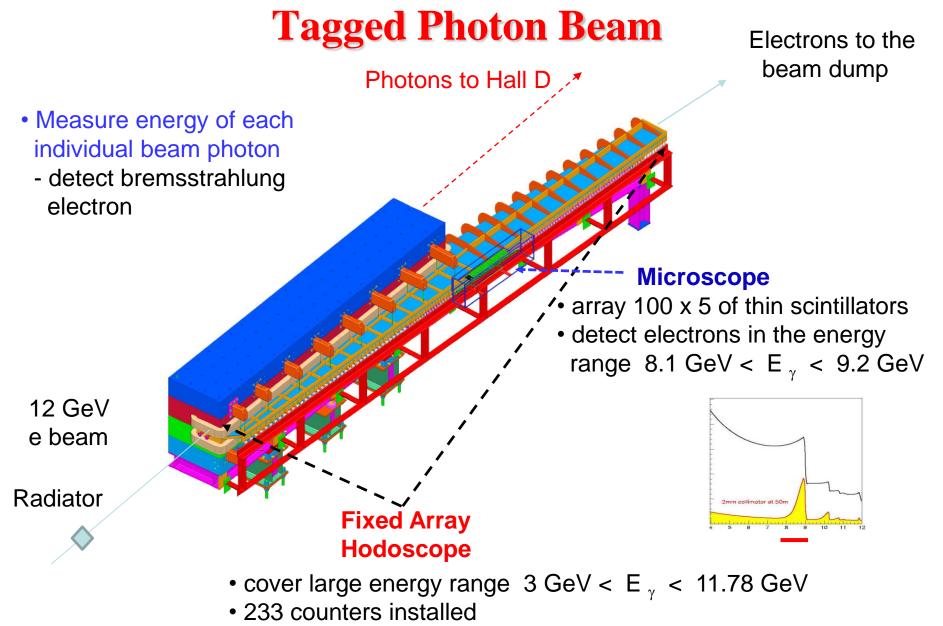

L1 trigger rate: up to 200 kHz L3 trigger rate: 20 kHz

diamond

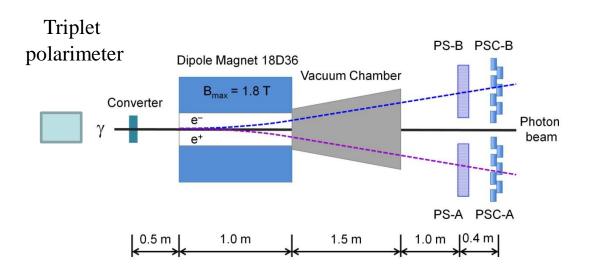

wafer

electron


beam



Polarized Photon Beam


- Beam photons are produced by 12 GeV electrons (I < 1.1 μ A) on a thin diamond crystal (20 – 50 μ m)) • Photon energy: detect bremsstrahlung electrons $\Delta E / E \sim 10^{-3}$
- Pass beam photons through the collimator
 - increase the fraction of linearly polarized photons
 - beam intensity: 5.107 $\gamma/sec~$ for 8.4 $\,< E_{\gamma}\,<$ 9.1 GeV

• detect tagged electrons with $E_{\gamma} > 9.2 \text{ GeV}$ during data runs

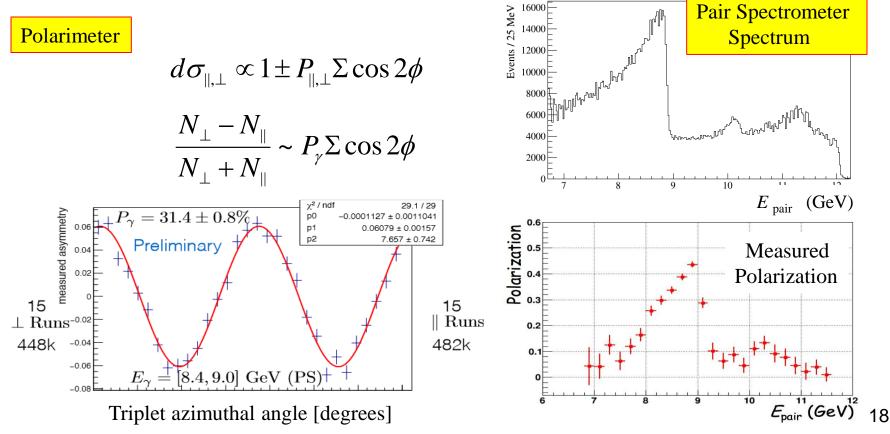
Photon Flux and Beam Polarization: Pair Spectrometer

Two layers of scintillator detectors:

High-granularity hodoscope (measure photon energy in the range 6 - 12 GeV)

Low-granularity counters (use in the trigger)

- Reconstruct the energy of a beam photon by detecting the e^\pm pair produced by the photon in a thin converter


- measure the spectrum of the collimated photon beam
- monitor the photon beam flux
- calibrate energy of tagger detectors

Beam Polarization

- Polarization measurements:
 - triplet production process $e \gamma \rightarrow e^- e^+ e^-$
 - photon beam spectrum
 - physics channel like $\gamma p \rightarrow \rho p$

(Triplet Polarimeter)(Pair Spectrometer, Tagger Microscope)

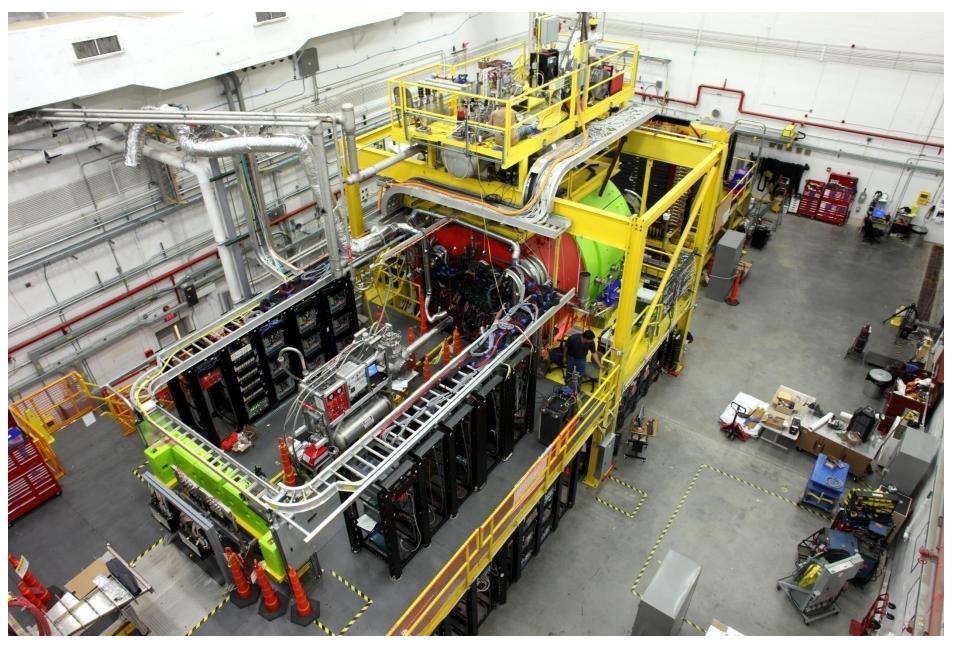
- Two orthogonal orientations of the polarization plane (radiator orientation)
 - horizontal and perpendicular

GlueX Detector

Tracking:


- Central Drift Chamber
- Forward Drift Chamber

Calorimetry:


- Barrel Calorimeter
- Forward Calorimeter

PID:

- Time of Flight wall
- Start Counter
- Barrel Calorimeter
- DIRC detector

GlueX Detector

Tracking

Forward Drift Chamber

- Angular coverage $1^{\circ} < \theta < 30^{\circ}$
- 4 packages, 6 cathode/wire/cathode chambers in each package
- ~12000 channels
- σ_{xy} ~ 200 μm

Tracking performance: $\sigma_p / p \sim 2 - 5 \%$

Central Drift Chamber

- Angular coverage $6^{\circ} < \theta < 155^{\circ}$
- 12 axial layers, 16 stereo layers
 3522 straw tubes (1.6 cm diameter)
- De/dx for p, π identification
- $\sigma_{\phi} \sim 150 \ \mu m$, $\sigma_z \sim 2 \ mm$

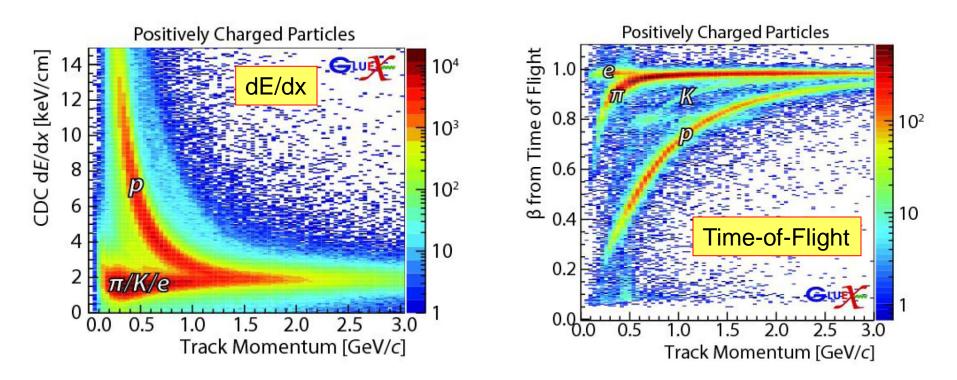
Barrel Calorimeter:

- Angular coverage 11° < θ < 120 °
- 191 layers Pb:ScFib:Glue (37:49:14%)
- Double side readout (SiPM)
- $\sigma_{\rm E}$ / E = 6 % / $\sqrt{\rm E}$ \oplus 1.6 %
- σ_z = 5 mm / \sqrt{E}
- σ_t = 74 ps / $\sqrt{E \oplus 33}$ ps

Calorimetry

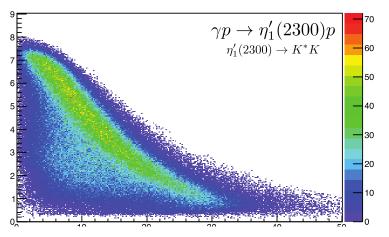
Forward Calorimeter:

- Angular coverage $2^{\circ} < \theta < 11^{\circ}$
- 2800 Pb-glass blocks: 4cm x 4 cm x 45 cm
- σ_{xy} = 6.4 mm / \sqrt{E}

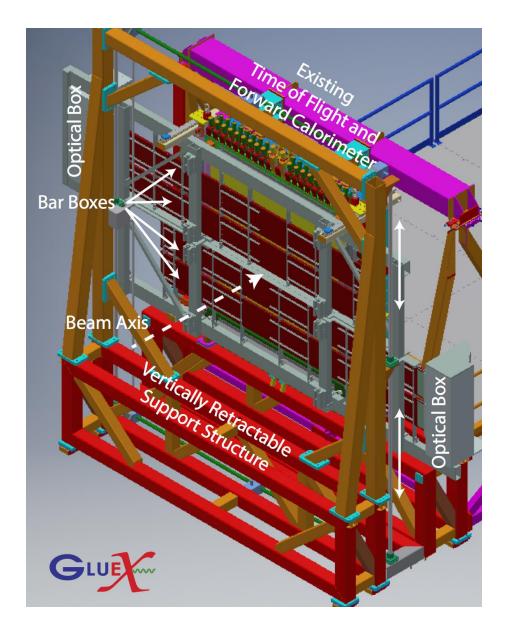


Particle Identification

• dE/dx: p/π separation p < 0.7 GeV/c

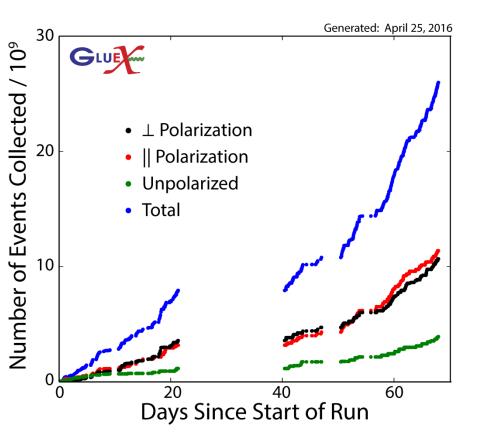

• Time-of-Flight wall: K/π separation up to p = 1.3 GeV/c

• kinematical constraints


Kaon Identification

- Install quartz bars (used in BaBar DIRC)
 - improve K/ π separation up to 4.0 GeV/c

Eff = 15 % (no DIRC) Eff = 33 % (with DIRC) purity 95 %

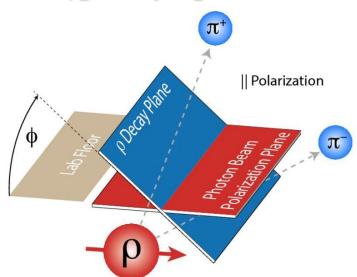

 installation scheduled for spring 2018

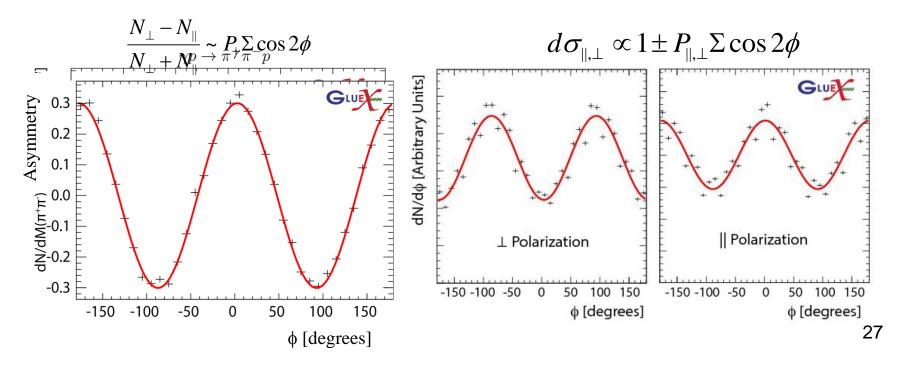
GlueX Commissioning in Spring 2016

- 12 GeV polarized photon beam delivered to Hall D
- Beam studies
- Detector performance studies
- Trigger studies
 - Trigger rate 30 kHz
 - 90 % live time
 - 750 Mbyte/sec data rate
- Acquire data for detector calibration and first physics

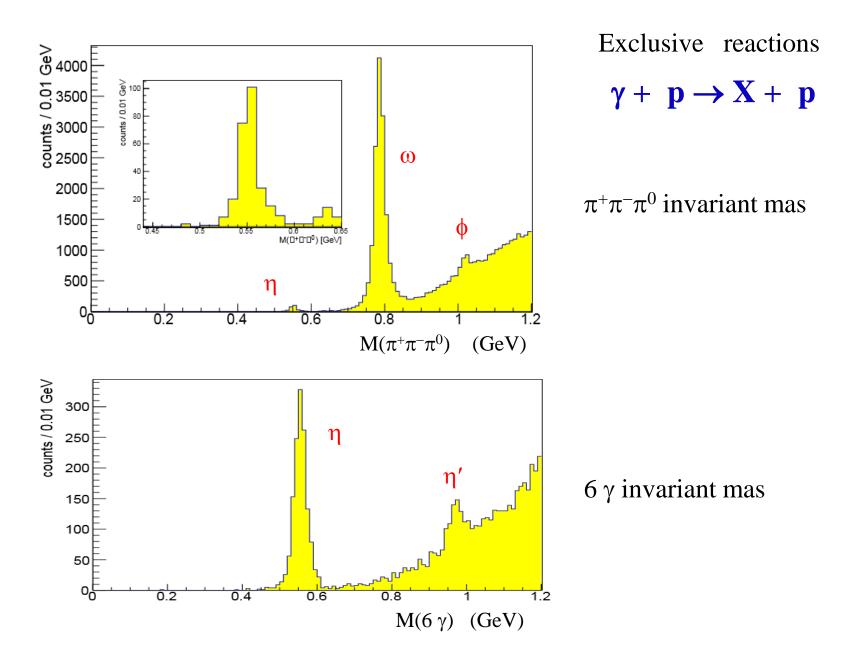
Plans for Early Physics

- Physics analyses using commissioning data
 - photoproduction of light mesons

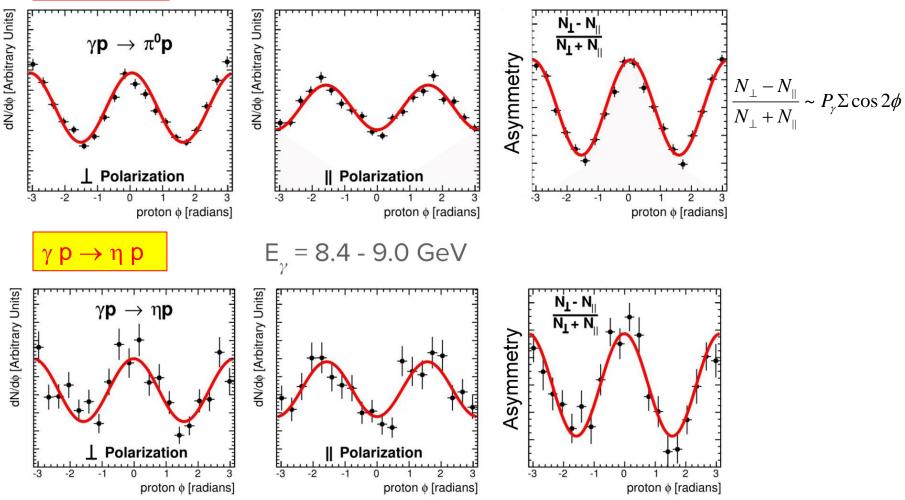

 $\gamma\,p\,\rightarrow\,(\,\pi,\eta,\eta',\rho,\omega,\phi\,)\,p$


- measurements of polarization transfer, beam asymmetry
- cross sections
- Initial searches for exotic hybrid mesons:

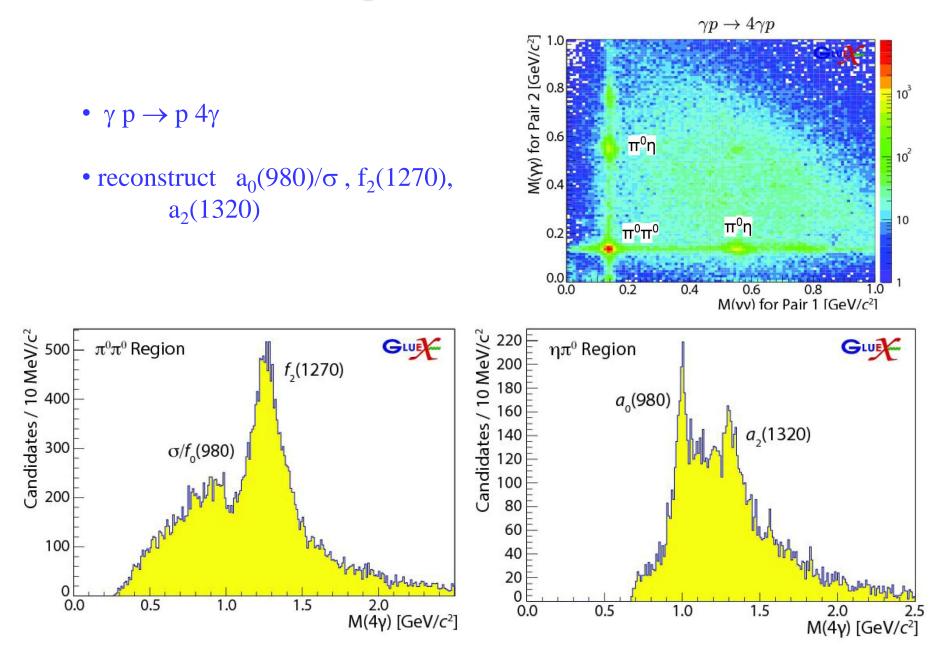
$$\begin{array}{l} \gamma \ p \rightarrow \eta \ \pi \ (n, p) \\ \gamma \ p \rightarrow \eta' \ \pi \ (n, p) \\ \gamma \ p \rightarrow \rho \ \pi \ (n, p) \\ \gamma \ p \rightarrow \rho \ \pi \ (n, p) \\ \gamma \ p \rightarrow \omega \ \pi \ (n, p) \\ \gamma \ p \rightarrow \omega \ \pi \ (n, p) \\ \gamma \ p \rightarrow \eta \ \pi \ \pi \ (n, p) \end{array}$$


Photoproduction of \rho Mesons: $\gamma p \rightarrow \rho^0 p$

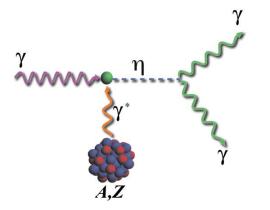
- \bullet Large polarization transfer to ρ meson
- Good channel to monitor photon beam polarization
- Data sample acquired: ~4 M reconstructed γp → ρ⁰ p in 8.4 < Eγ < 9.0 GeV
 about two orders of magnitude larger than world existing data !


Mesons Reconstructed with GlueX

28


Beam Asymmetries for Pseudoscalar Mesons

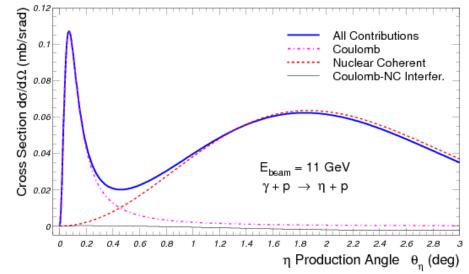
 $\gamma p \rightarrow \pi^0 p$


First asymmetry measurements for $\gamma p \rightarrow \eta p$

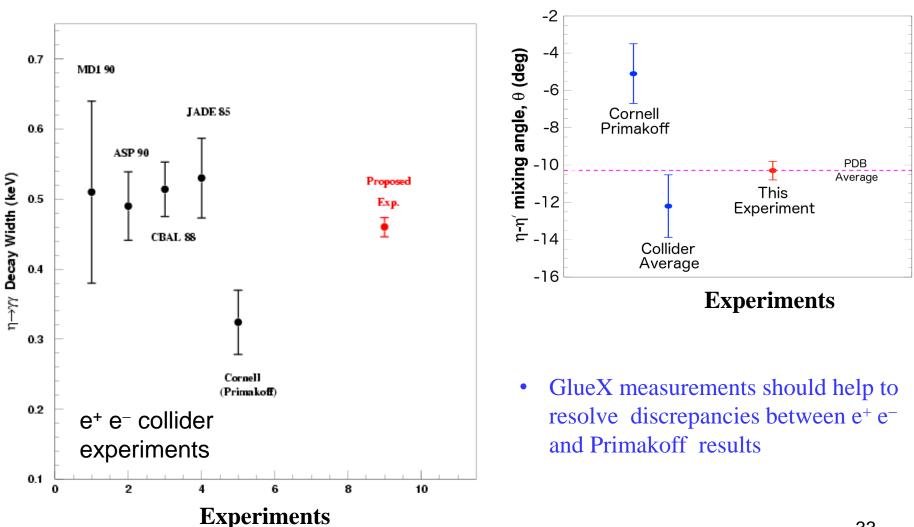
Multiphoton Final States

Experiments using Primakoff Production

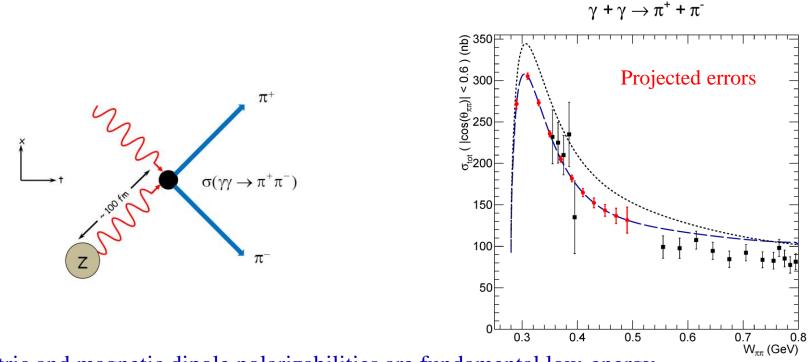
Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ via Primakoff Effect


Physics:

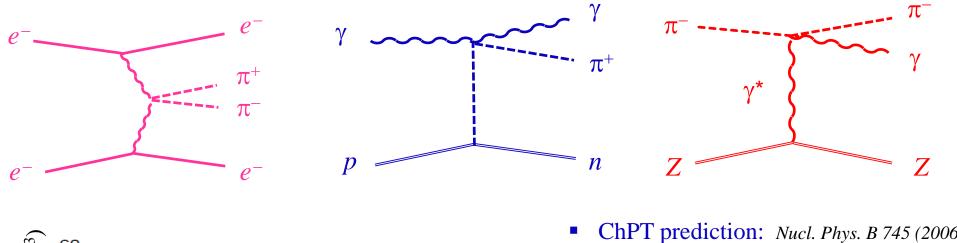
- Light quark mass ratio $\Gamma(\eta \rightarrow 3\pi) \propto |A|^2 \propto Q^4$
- $\eta \eta'$ mixing angle $Q^2 = \frac{m_s^2 \hat{m}^2}{m_u^2 m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$


Measurements:

$$\frac{d\sigma}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 E^4}{m^3 q^4} \cdot \left| F_{E.M.}(q) \right|^2 \cdot \sin^2 \theta$$

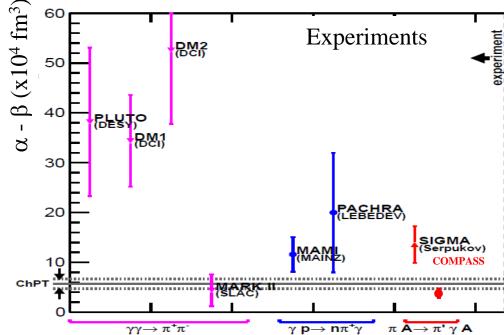

- Primakoff $\theta < 0.5^{\circ}$
- Fit to $\frac{d\sigma}{d\Omega}(\theta)$

$\Gamma(\eta \rightarrow \gamma \gamma)$ Hall D Projection



Charged Pion Polarizability

- Electric and magnetic dipole polarizabilities are fundamental low-energy properties of strong interactions
- Use Primakoff production $\gamma A \rightarrow \pi^+ \pi^- A$ to extract pion polarizability - *test* χ_{PT} *predictions*
- Use polarized photon beam to reduce background from ρ decays and $\mu^{+}\mu^{-}$
- Require new muon detector


Charged Pion Polarizability

 $\begin{array}{l} \alpha_{\pi} \text{ - }\beta_{\pi} \text{ = } (\text{ 5.7} \pm 1.0 \text{ }) \cdot 10^{\text{ -4}} \text{ fm}^{3} \\ \alpha_{\pi} \approx \text{ - }\beta_{\pi} \end{array}$

- Latest measurement of COMPASS ($\pi^- \gamma \rightarrow \pi^- \gamma$) *PRL 114, 062002 (2015)*
- α_{π} = ($2.0 \pm 0.6 \pm 0.7$) $\cdot 10$ $^{\text{-4}}$ fm^3 assuming α_{π} = β_{π}
- GlueX expectation

$$\sigma (\alpha_{\pi} - \beta_{\pi}) \sim 0.6 \cdot 10^{-4} \, \text{fm}^3$$
 35

η Decays with Emphasis on Rare Neutral Modes:
 The Jefferson Lab η Factory Experiment (JEF)

JEF Project Overview

Mode	Branching Ratio	Physics Highlight	Photons
priority:			
$\pi^0 2\gamma$	Upgrade the F	4	
$\gamma + B$	beyond SM	leptophobic dark boson	4
$3\pi^0$	$(32.6 \pm 0.2)\%$	$m_u - m_d$	6
$\pi^+\pi^-\pi^0$	$(22.7 \pm 0.3)\%$	$m_u - m_d$, CV	2
3γ	$< 1.6 \times 10^{-5}$	CV, CPV	3
ancillary:			
4γ	$<2.8\times10^{-4}$	$< 10^{-11}[112]$	4
$2\pi^0$	$< 3.5 \times 10^{-4}$	CPV, PV	4
$2\pi^0\gamma$	$< 5 \times 10^{-4}$	CV, CPV	5
$3\pi^0\gamma$	$< 6 imes 10^{-5}$	CV, CPV	6
$4\pi^0$	$< 6.9 \times 10^{-7}$	CPV, PV	8
$\pi^0\gamma$	$< 9 imes 10^{-5}$	CV,	3
		Ang. Mom. viol.	
normalization:			
2γ	$(39.3 \pm 0.2)\%$		
			2

Main physics goal:

 Probe interplay of VMD & scalar resonances in ChPT to calculate O(p⁶) LEC's in the chiral Lagrangian

- 2. Search for a dark boson (B)
- 3. Directly constrain CVPC new physics
- 4. Constrain the light quark mass ratio

Search for B-boson

See Liping Gan talk

• Dark leptophobic B-boson

$$L = \frac{1}{3} g_B \overline{q} \gamma^\mu q B_\mu + \dots$$

• Arises from a new gauge baryon symmetry $U(1)_B$

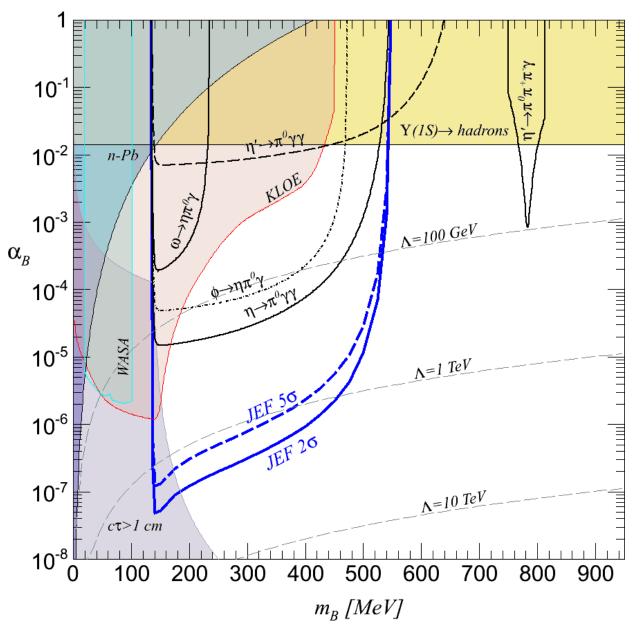
Early studies by Lee and Yang, Phys.Rev.,98 (1955) 1501; Okun, Yad.Fiz., 10 (1969) 358,

• the $m_B < m_p$ region is strongly constrained by long-range forces search exp.; the $m_B > 50 GeV$ has been investigated by the collider exp

 GeV-scale domain is poorly constrained discovery opportunity!

Search for B-boson in η decay

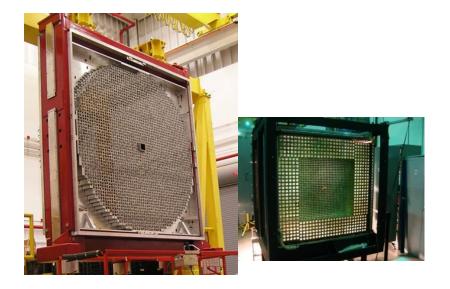
B production:


A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989)

$$\eta \rightarrow B\gamma \text{ decay } (m_B < m_\eta)$$

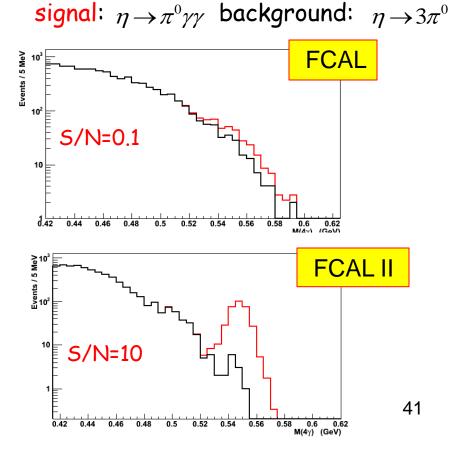
 $\eta \rightarrow B\gamma \text{ decay } (m_B < m_\eta)$
Triangle diagram

B decays: $B \rightarrow \pi^0 \gamma$ in 140-600 MeV mass range


JEF Experimental Reach ($\eta \rightarrow B\gamma \rightarrow \pi^0 \gamma \gamma$)

A stringent constraint on the leptophobic Bboson in 140-550 MeV range.

Future η ' experiment will extend the experimental reach up to 1 GeV


New Calorimeter for GlueX: FCAL-II

FCAL-II (PbWO₄) vs. FCAL (Pb glass)

Property	Improvement factor	
Energy σ	2	
Position σ	2	
Granularity	4	
Radiation- resistance	10	

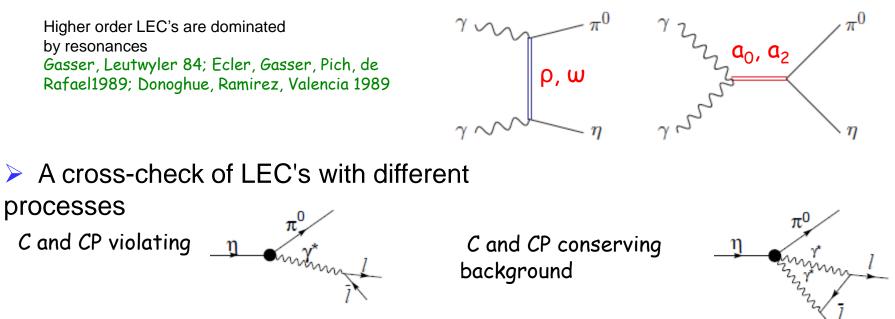
- Replace the inner part of FCAL with the PWO insertion:
 - 100x100 cm² in Size (2496 PbWO₄)
 - 2cm x 2cm x 18cm per module

Summary

- The GlueX detector has been commissioned and is ready to start the main physics program in Fall 2016
 - data sample acquired during the commission run is currently used in first physics analyses
- The GlueX experiment will study the spectrum of light-quark mesons and perform a search of exotic mesons with a polarized photon beam
- > Other experiments:
 - Radiative decays of $\eta \rightarrow \gamma \gamma$
 - Charged pion polarizability
 - Study rare η decays (require upgrade of the forward calorimeter)
 - Several other physics topics are being currently discussed

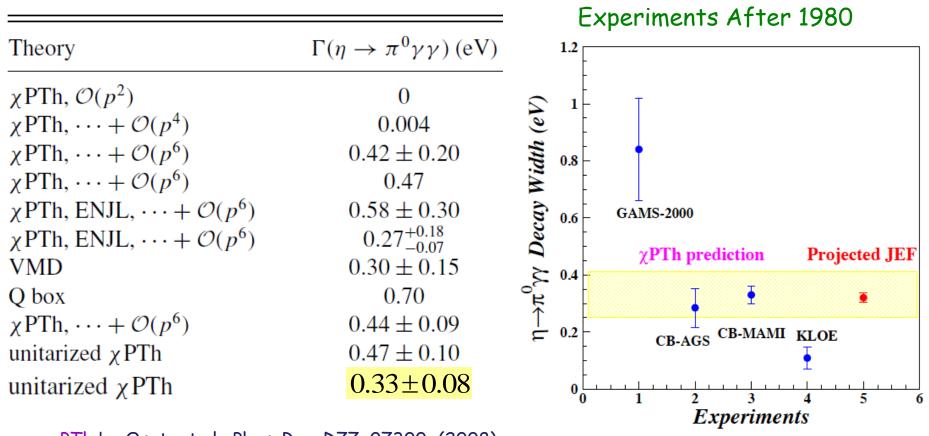
If you are interested in GlueX physics, please join us !

Backup Slides

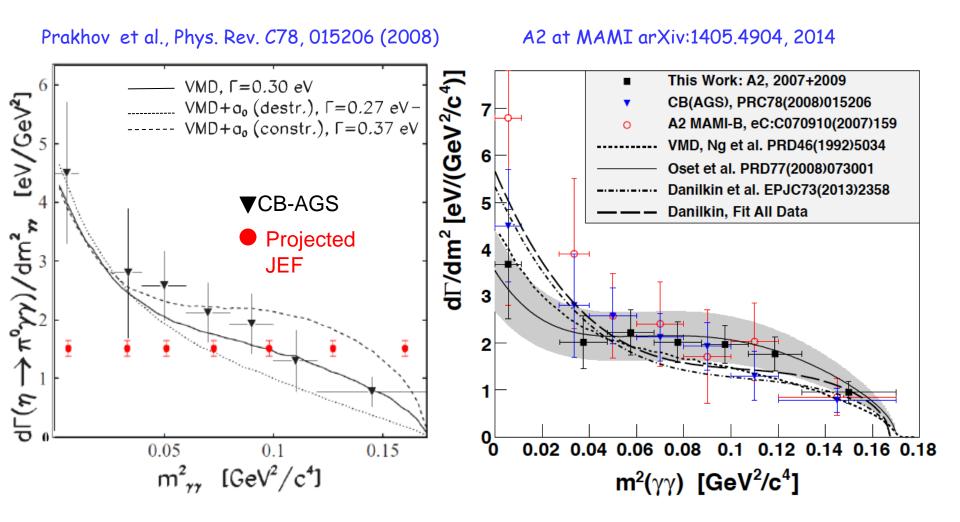

Impact of $\eta \rightarrow \pi^0 \gamma \gamma$ **measurements on ChPT**

✓ Unique probe for the high order ChPT: the major contributions to η →π⁰γγ are two O(p⁶) counter-terms in the chiral Lagrangian

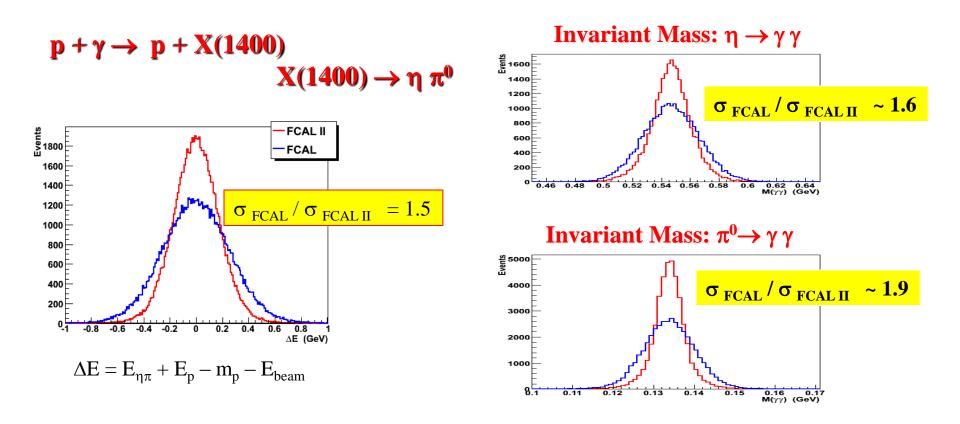
L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)


Study contribution of scalar resonances in calculation of O(p⁶) LECs in the chiral Lagrangian

Shape of Dalitz distribution is sensitive to the role of scalar resonances


J.N. Ng, et al., Phys. Rev., D46, 5034 (1992)

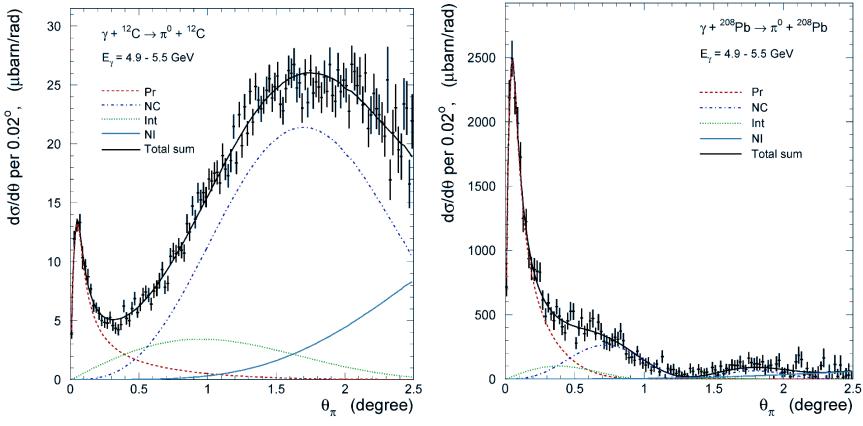
$\eta \rightarrow \pi^0 \gamma \gamma$: Partial Decay Width


χPTh by Oset et al., Phys. Rev. D77, 07300 (2008) arXiv:08801 (2013)

$\eta \rightarrow \pi^0 \gamma \gamma$: Dalitz Distribution

FCAL II Improvements for Other GlueX Channels

Impact on GlueX Spectroscopy program


Improve precision of Primakoff experiment on $\Gamma(\eta \rightarrow \gamma \gamma)$ from 3% to 2%

Photon Beam Requirements

Experiment	Photon Energy Range (GeV)	Polarization	Photon Flux γ/ sec
GlueX Search for gluonic excitations in the spectra of light mesons	8.4 – 9.0	44 %	5 · 10 ⁷
PrimEx A precision measurement of the $\eta \rightarrow \gamma \gamma$ decay width via the Primakoff effect	10.5 – 11.7	None	7.6 · 10 ⁶
Measuring the charged pion polarizability	5.5 - 6.0	76 %	107

Nuclear Targets in PrimEX I Experimet

- Experiment performed in Hall-B using a 6 GeV photon beam
- > Measure $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ using nuclear targets: ¹² C and ²⁰⁸ Pb

C Invariance

- Maximally violated in the weak force and is well tested
- SM prediction:

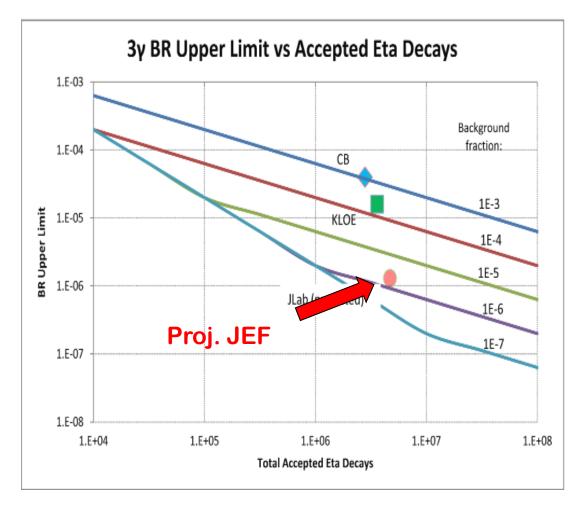
BR($\eta \rightarrow 3\gamma$) <10⁻¹⁹ via P-violating weak interaction.

- Study constraints on CVPC from EDM
 - no constraints in the presence of

а

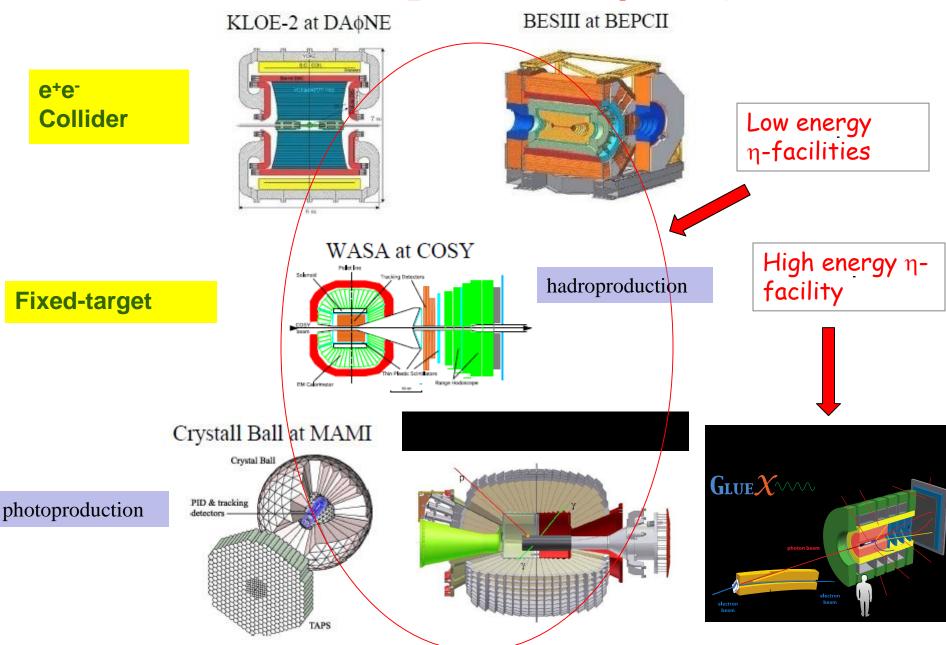
conspiracy or new symmetry; only

M. Ramsey-Musolf, phys. Rev., D63 upampiguous


talk at the AFCI workshop,

studies are in progress

C Violating η neutral decays


	Final State	Branching Ratio (upper limit)	Gammas in Final State
•	3γ	< 1.6•10 ⁻⁵	2
	π ⁰ γ	< 9•10 ⁻⁵	3
	2π ⁰ γ	< 5 · 10 ⁻⁴	
			5
	3γπ ⁰	Nothing published	
	3π ⁰ γ < 6·10 ⁻⁵		7
	3γ2π ⁰	Nothing published	

Upper Limit on $\eta \rightarrow 3\gamma$

Improve BR upper limit by one order of magnitude

World competition in η decays

