Accessing ROOT from the JVM (update)

Jim Pivarski

2016-02-22

/10

Motivation (reminder)

Data pipeline tools (such as Apache Hadoop, Spark, Storm, etc.)
run on the Java Virtual Machine (JVM) and most physics data is
in ROOT, so we need a bridge.

Target use-case: help physics groups move their T Tree skimming
jobs to Spark.
» Potentially faster for iterative studies (skim, fix bug, reskim)
because intermediate datasets can be cached in-memory.
> Abstracts away file locations and transfers, focuses on data
transformations.
» Consolidates many ad-hoc shell scripts into a single,
programmable workflow.
> Tree of map/filter/reduce transformations can simplify
scanning (parameter scans, cut scans, ...).
» May require training to help physicists adopt the new
paradigm, so limit scope to skimming for now.

2/10

Following two approaches:

» FreeHEP-ROOTIO (pure-Java reimplementation)
> Never heard back from Tony Johnson.
» But it works: never had any problems opening ROOT files
(even old ones), and TTree interface is good.
» However, RootFileReader requires a file on disk, which
limits usefulness.

» No java.io.InputStream constructor because of seeking.

> java.net.URL constructor doesn't accept “http://"?77

3/10

Following two approaches:

» FreeHEP-ROOTIO (pure-Java reimplementation)
> Never heard back from Tony Johnson.
» But it works: never had any problems opening ROOT files
(even old ones), and TTree interface is good.
» However, RootFileReader requires a file on disk, which
limits usefulness.
» No java.io.InputStream constructor because of seeking.
> java.net.URL constructor doesn't accept “http://"?77
» Bridge to native ROOT libraries
» Java's built-in JNI requires some care (always failed for me).
» JNA library works pretty well.
» Must be adapted with intermediate C code to provide a C-like
interface.
> Intermediate . so file can be included in the deployed JAR.
> Segmentation faults rarely (and randomly). Haven't found the
cause: it's outside my code and | don't delete any pointers.
> Newer BridJ library might help:
> Intended for C++, maybe no need for intermediate . so file.
> Richer interface for dealing with pointers; optimized for speed.

10

Status

| have working code, but I'm rapidly swapping it out as | try new
things. New scaroot git branch for each major change.

» Built clean, fast Scala interface to T Trees using compile-time
macros (next page).

» Successfully passed TTrees through Hadoop map-reduce.

» Successfully passed TTrees through a Spark workflow.

However,
» Hadoop mappers had to copy the file from HDFS to local disk
before reading (fixable).
» Spark could only use the user’s classes if precompiled in a
JAR, not given on the commandline, dramatically changing
the Spark user experience (fixable).

» Also, Spark's Kryo serialization had to be used (not a bad
thing: it's 10 times faster than native Java serialization).

Scala interface

The user has to know the names and types of leaves in the TTree
to define an interface. Otherwise, the interface can't be a
first-class object with precompiled field accessors.

Interface could be auto-generated from a sample ROOT file and
pasted into a user's project.

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)

Scala case classes:
» are immutable, lightweight data objects;

v

automatically present constructor arguments as public fields;
have a readable commandline representation;

v

v

can be used in pattern-matching for declarative condition
checking;

» are a common currency for Scala data transformation.

Scala interface
The user has to know the names and types of leaves in the TTree
to define an interface. Otherwise, the interface can't be a
first-class object with precompiled field accessors.

Interface could be auto-generated from a sample ROOT file and
pasted into a user's project.

case class Dimuon (mass: Float, px: Float, py: Float, pz: Float)
{

def momentum = Math.sqgrt (px*xpx + py*py + pz*pz)

def energy = Math.sqgrt (massx*mass + momentum*momentum)

}

Scala case classes:

» are immutable, lightweight data objects;

» automatically present constructor arguments as public fields;
> have a readable commandline representation;
>

can be used in pattern-matching for declarative condition
checking;

> are a common currency for Scala data transformation.

Scala interface

Complete example:

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)

{
def momentum = Math.sqgrt (px*px + py*py + pz*pz)
def energy = Math.sqgrt (mass*mass + momentumxmomentum)

}

Random access reader (FreeHep version and iterators are similar):

val dimuons = NativeRootTTreeReader [Dimuon] (
"TrackResonanceNtuple.root", "TrackResonanceNtuple/twoMuon")

The template resolution ([Dimuon] in Scala means <Dimuon>
in Java/C++) calls a macro that creates a custom factory for the
user's Dimuon class.
Alternatives are:
» Java runtime reflection (slower),
» putting all user operations in a sublanguage (TTree: :Draw),
> requiring the user to set up the boilerplate.

6/10

Hadoop example

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)
def momentum = Math.sqgrt (px*px + py*py + pz*pz)
def energy = Math.sqrt (mass*mass + px*px + Py*py + pz*pz)

}

class DimuonWritable extends ValueWritable[Dimuon]

class DimuonInputFormat extends RootInputFormat [
Dimuon, DimuonWritable] ("TrackResonanceNtuple/twoMuon™)

Hadoop needs objects wrapped in Writables because it uses
custom serialization methods. Creating this subclass invokes a
macro to write them.

{

10

Hadoop example

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)
def momentum = Math.sqgrt (px*px + py*py + pz*pz)
def energy = Math.sqrt (mass*mass + px*px + Py*py + pz*pz)

}

class DimuonWritable extends ValueWritable[Dimuon]

class DimuonInputFormat extends RootInputFormat [
Dimuon, DimuonWritable] ("TrackResonanceNtuple/twoMuon™)

Hadoop needs objects wrapped in Writables because it uses
custom serialization methods. Creating this subclass invokes a

macro to write them.

class TestMapper extends Mapper [KeyWritable, TwoMuonWritable,
IntWritable, TwoMuonWritable] {

override def map (key: KeyWritable, value: TwoMuonWritable,
context: Context) {

// using pattern-matching to define "ttreeEntry" and "mass
val KeyWritable (ttreeEntry) = key
val ValueWritable (TwoMuon (mass, _, _, _)) = value

// passing to the reducer, keyed on binned mass
context.write (new IntWritable (mass.toInt), wvalue)

10

Spark example

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)
def momentum = Math.sqgrt (px*px + py*py + pz*pz)
def energy = Math.sqrt (mass*mass + px*px + Py*py + pz*pz)

}
Add a rootRDD method to SparkContext via pimp-my-library:

import org.dianahep.scaroot.spark._

val inputRDD = sc.rootRDD[Dimuon] (
"TrackResonanceNtuplex*.root", "TrackResonanceNtuple/twoMuon")

val histogram = inputRDD.filter(_.mass > 60.0).map(_.mass.toInt).

countByKey ()

» |I'm internally passing my Root InputFormat to Spark’s
sc.newAPIHadoopRDD, but unfortunately this requires
RootInputFormat to have a zero-argument constructor.
Scala inserts a hidden constructor argument to pass data to
my macro, to overcome the JVM's type erasure.
Workaround: write a custom RDD class.

» Also, Hadoop's serialization is ignored by Spark; use Kryo.

{

10

Future direction(s)

» The pure-Java FreeHEP-ROOTIO is nice, but it can only read
from a local filesystem.

» | could alter it to add support for FSDataInputStream
(HDFS) and xrootd4j, but there's no guarantee that it will
handle remote seeking efficiently.

» Therefore, | want to make a native solution bug-free.
» Testing BridJ, which is newer than JNA and is C++-aware.
» JNAerator generates bindings for JNA or BridJ.
> Attempt to convert ROOT's header files to Java: spent
almost 100% of 32 CPUs for 3 hours before giving up.
» Worst case: external process piping Avro data.
> I've done it before, very familiar with Avro serialization.
> By-product: we'd have a general purpose ROOT-to-Avro
converter.

» Might use TProcess: :Declare (C++ compile-time macros).

» Want to process T Trees with objects, possibly CMS's FW.Lite.

10

Attempting to use JNAerator on ROOT

ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubunt.u
F2:

—jar JNRerator/ jnasrator/targst/ jnasrator—0, 13-SNAPSHO
-jar INferator/inasrator target/naerator—0, 13-SHAPSHO
-Jar INferator/nacratortarget nacrator—0, 13-SHAPSHO
-jar TNferator jnacratorstarget/ naerator=0, 12-SNAFSHO
-jar JMAerator/ jnaerator/target, jnasrator=0, 13-SNAPSHO
-jar

-jar

-jar

-jar INferatorjnasrator/target/ jnasrator=0, 12-GNAFSHO
-jar JMierator/ jnaerator/target/ jnasrator=0, 13-SNAPSHO
—Jjar TNéerator/ jnacrator/target/ jnasrator—0, 13-SNAPSHO
-Jar INferator/nacrator/target/nacrator—0, 13-SHAPSHO
-jar TNferatorjnacrator target/jnaerator—0, 13-GNAPSHO
-jar JMAerator/ jnaerator/target, jnasrator=0, 13-SNAPSHO
—jar JNAerator/ jnasrator/target./ jnasrator—0. 13-SNAPSHO
F10

FHEEEEEEE
PRI IicY
shiBERELE

B e e e e e
SEHEEEY
b
LeEZshiNE

e

