
Accessing ROOT from the JVM (update)

Jim Pivarski

2016-02-22

1 / 10



Motivation (reminder)

Data pipeline tools (such as Apache Hadoop, Spark, Storm, etc.)
run on the Java Virtual Machine (JVM) and most physics data is
in ROOT, so we need a bridge.

Target use-case: help physics groups move their TTree skimming
jobs to Spark.

I Potentially faster for iterative studies (skim, fix bug, reskim)
because intermediate datasets can be cached in-memory.

I Abstracts away file locations and transfers, focuses on data
transformations.

I Consolidates many ad-hoc shell scripts into a single,
programmable workflow.

I Tree of map/filter/reduce transformations can simplify
scanning (parameter scans, cut scans, . . . ).

I May require training to help physicists adopt the new
paradigm, so limit scope to skimming for now.

2 / 10



Following two approaches:
I FreeHEP-ROOTIO (pure-Java reimplementation)

I Never heard back from Tony Johnson.
I But it works: never had any problems opening ROOT files

(even old ones), and TTree interface is good.
I However, RootFileReader requires a file on disk, which

limits usefulness.
I No java.io.InputStream constructor because of seeking.
I java.net.URL constructor doesn’t accept “http://”???

I Bridge to native ROOT libraries
I Java’s built-in JNI requires some care (always failed for me).
I JNA library works pretty well.

I Must be adapted with intermediate C code to provide a C-like
interface.

I Intermediate .so file can be included in the deployed JAR.
I Segmentation faults rarely (and randomly). Haven’t found the

cause: it’s outside my code and I don’t delete any pointers.
I Newer BridJ library might help:

I Intended for C++, maybe no need for intermediate .so file.
I Richer interface for dealing with pointers; optimized for speed.

3 / 10



Following two approaches:
I FreeHEP-ROOTIO (pure-Java reimplementation)

I Never heard back from Tony Johnson.
I But it works: never had any problems opening ROOT files

(even old ones), and TTree interface is good.
I However, RootFileReader requires a file on disk, which

limits usefulness.
I No java.io.InputStream constructor because of seeking.
I java.net.URL constructor doesn’t accept “http://”???

I Bridge to native ROOT libraries
I Java’s built-in JNI requires some care (always failed for me).
I JNA library works pretty well.

I Must be adapted with intermediate C code to provide a C-like
interface.

I Intermediate .so file can be included in the deployed JAR.
I Segmentation faults rarely (and randomly). Haven’t found the

cause: it’s outside my code and I don’t delete any pointers.
I Newer BridJ library might help:

I Intended for C++, maybe no need for intermediate .so file.
I Richer interface for dealing with pointers; optimized for speed.

3 / 10



Status

I have working code, but I’m rapidly swapping it out as I try new
things. New scaroot git branch for each major change.

I Built clean, fast Scala interface to TTrees using compile-time
macros (next page).

I Successfully passed TTrees through Hadoop map-reduce.

I Successfully passed TTrees through a Spark workflow.

However,

I Hadoop mappers had to copy the file from HDFS to local disk
before reading (fixable).

I Spark could only use the user’s classes if precompiled in a
JAR, not given on the commandline, dramatically changing
the Spark user experience (fixable).

I Also, Spark’s Kryo serialization had to be used (not a bad
thing: it’s 10 times faster than native Java serialization).

4 / 10



Scala interface
The user has to know the names and types of leaves in the TTree
to define an interface. Otherwise, the interface can’t be a
first-class object with precompiled field accessors.

Interface could be auto-generated from a sample ROOT file and
pasted into a user’s project.

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)

{
def momentum = Math.sqrt(px*px + py*py + pz*pz)
def energy = Math.sqrt(mass*mass + momentum*momentum)

}

Scala case classes:

I are immutable, lightweight data objects;
I automatically present constructor arguments as public fields;
I have a readable commandline representation;
I can be used in pattern-matching for declarative condition

checking;
I are a common currency for Scala data transformation.

5 / 10



Scala interface
The user has to know the names and types of leaves in the TTree
to define an interface. Otherwise, the interface can’t be a
first-class object with precompiled field accessors.

Interface could be auto-generated from a sample ROOT file and
pasted into a user’s project.

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)
{

def momentum = Math.sqrt(px*px + py*py + pz*pz)
def energy = Math.sqrt(mass*mass + momentum*momentum)

}

Scala case classes:

I are immutable, lightweight data objects;
I automatically present constructor arguments as public fields;
I have a readable commandline representation;
I can be used in pattern-matching for declarative condition

checking;
I are a common currency for Scala data transformation.

5 / 10



Scala interface
Complete example:

case class Dimuon(mass: Float, px: Float, py: Float, pz: Float)
{

def momentum = Math.sqrt(px*px + py*py + pz*pz)
def energy = Math.sqrt(mass*mass + momentum*momentum)

}

Random access reader (FreeHep version and iterators are similar):

val dimuons = NativeRootTTreeReader[Dimuon](
"TrackResonanceNtuple.root", "TrackResonanceNtuple/twoMuon")

The template resolution ([Dimuon] in Scala means <Dimuon>
in Java/C++) calls a macro that creates a custom factory for the
user’s Dimuon class.

Alternatives are:

I Java runtime reflection (slower),

I putting all user operations in a sublanguage (TTree::Draw),

I requiring the user to set up the boilerplate.

6 / 10



Hadoop example
case class Dimuon(mass: Float, px: Float, py: Float, pz: Float) {

def momentum = Math.sqrt(px*px + py*py + pz*pz)
def energy = Math.sqrt(mass*mass + px*px + py*py + pz*pz)

}
class DimuonWritable extends ValueWritable[Dimuon]
class DimuonInputFormat extends RootInputFormat[

Dimuon, DimuonWritable]("TrackResonanceNtuple/twoMuon")

Hadoop needs objects wrapped in Writables because it uses
custom serialization methods. Creating this subclass invokes a
macro to write them.

class TestMapper extends Mapper[KeyWritable, TwoMuonWritable,
IntWritable, TwoMuonWritable] {

override def map(key: KeyWritable, value: TwoMuonWritable,
context: Context) {

// using pattern-matching to define "ttreeEntry" and "mass":
val KeyWritable(ttreeEntry) = key
val ValueWritable(TwoMuon(mass, _, _, _)) = value

// passing to the reducer, keyed on binned mass
context.write(new IntWritable(mass.toInt), value)

}
}

7 / 10



Hadoop example
case class Dimuon(mass: Float, px: Float, py: Float, pz: Float) {

def momentum = Math.sqrt(px*px + py*py + pz*pz)
def energy = Math.sqrt(mass*mass + px*px + py*py + pz*pz)

}
class DimuonWritable extends ValueWritable[Dimuon]
class DimuonInputFormat extends RootInputFormat[

Dimuon, DimuonWritable]("TrackResonanceNtuple/twoMuon")

Hadoop needs objects wrapped in Writables because it uses
custom serialization methods. Creating this subclass invokes a
macro to write them.
class TestMapper extends Mapper[KeyWritable, TwoMuonWritable,

IntWritable, TwoMuonWritable] {
override def map(key: KeyWritable, value: TwoMuonWritable,

context: Context) {

// using pattern-matching to define "ttreeEntry" and "mass":
val KeyWritable(ttreeEntry) = key
val ValueWritable(TwoMuon(mass, _, _, _)) = value

// passing to the reducer, keyed on binned mass
context.write(new IntWritable(mass.toInt), value)

}
}

7 / 10



Spark example
case class Dimuon(mass: Float, px: Float, py: Float, pz: Float) {

def momentum = Math.sqrt(px*px + py*py + pz*pz)
def energy = Math.sqrt(mass*mass + px*px + py*py + pz*pz)

}

Add a rootRDD method to SparkContext via pimp-my-library:

import org.dianahep.scaroot.spark._

val inputRDD = sc.rootRDD[Dimuon](
"TrackResonanceNtuple*.root", "TrackResonanceNtuple/twoMuon")

val histogram = inputRDD.filter(_.mass > 60.0).map(_.mass.toInt).
countByKey()

I I’m internally passing my RootInputFormat to Spark’s
sc.newAPIHadoopRDD, but unfortunately this requires
RootInputFormat to have a zero-argument constructor.
Scala inserts a hidden constructor argument to pass data to
my macro, to overcome the JVM’s type erasure.
Workaround: write a custom RDD class.

I Also, Hadoop’s serialization is ignored by Spark; use Kryo.
8 / 10



Future direction(s)

I The pure-Java FreeHEP-ROOTIO is nice, but it can only read
from a local filesystem.

I I could alter it to add support for FSDataInputStream
(HDFS) and xrootd4j, but there’s no guarantee that it will
handle remote seeking efficiently.

I Therefore, I want to make a native solution bug-free.
I Testing BridJ, which is newer than JNA and is C++-aware.
I JNAerator generates bindings for JNA or BridJ.

I Attempt to convert ROOT’s header files to Java: spent
almost 100% of 32 CPUs for 3 hours before giving up.

I Worst case: external process piping Avro data.
I I’ve done it before, very familiar with Avro serialization.
I By-product: we’d have a general purpose ROOT-to-Avro

converter.

I Might use TProcess::Declare (C++ compile-time macros).

I Want to process TTrees with objects, possibly CMS’s FWLite.

9 / 10



Attempting to use JNAerator on ROOT:

10 / 10


