Theory overview on amplitude analyses with charm decays

B. Loiseau

LPNHE, Groupe Phénoménologie (Paris, France)

CHARM 2016, VIII International Workshop on Charm Physics, September 5 - 9, 2016 - Bologna, Italy
INTRODUCTION

FSI CONSTRAINTS
- Basic weak interaction + chiral unitary approach

DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$
- $D \rightarrow VP$ decays within SU(3) flavor symmetry
- Fit on branching fractions of $D \rightarrow VP$ decays
- Concluding remarks on this $D \rightarrow VP$ study

FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$
- Quasi-two-body factorization for $D^0 \rightarrow K^0_S \pi^+ \pi^-$
- Form factors
- Dalitz-plot fit

CONCLUDING REMARKS
- Amplitude parametrizations
- Outlook
- Backup slides

Outline

1. INTRODUCTION
2. FSI CONSTRAINTS
 - Basic weak interaction + chiral unitary approach
3. DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$
 - $D \rightarrow VP$ decays within SU(3) flavor symmetry
 - Fit on branching fractions of $D \rightarrow VP$ decays
 - Concluding remarks on this $D \rightarrow VP$ study
4. FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$
 - Quasi-two-body factorization for $D^0 \rightarrow K^0_S \pi^+ \pi^-$
 - Form factors
 - Dalitz-plot fit
5. CONCLUDING REMARKS
 - Amplitude parametrizations
 - Outlook
 - Backup slides
INTRODUCTION

FSI CONSTRAINTS

DIAGRAMMATIC APPROACH: \(D \rightarrow M_1 M_2 \)

FACTORIZATION APPROACH: \(D \rightarrow m_1 m_2 m_3 \)

CONCLUDING REMARKS

Outline

1. INTRODUCTION
2. FSI CONSTRAINTS
 - Basic weak interaction + chiral unitary approach
3. DIAGRAMMATIC APPROACH: \(D \rightarrow M_1 M_2 \)
 - \(D \rightarrow VP \) decays within SU(3) flavor symmetry
 - Fit on branching fractions of \(D \rightarrow VP \) decays
 - Concluding remarks on this \(D \rightarrow VP \) study
4. FACTORIZATION APPROACH: \(D \rightarrow m_1 m_2 m_3 \)
 - Quasi-two-body factorization for \(D^0 \rightarrow K_S^0 \pi^+ \pi^- \)
 - Form factors
 - Dalitz-plot fit
5. CONCLUDING REMARKS
 - Amplitude parametrizations
 - Outlook
 - Backup slides
INTRODUCTION

FSI CONSTRAINTS

DIAGRAMMATIC APPROACH: \(D \to M_1 M_2 \)
- Basic weak interaction + chiral unitary approach
- \(D \to VP \) decays within SU(3) flavor symmetry
- Fit on branching fractions of \(D \to VP \) decays
- Concluding remarks on this \(D \to VP \) study

FACTORIZATION APPROACH: \(D \to m_1 m_2 m_3 \)
- Quasi-two-body factorization for \(D^0 \to K_S^0 \pi^+ \pi^- \)
- Form factors
- Dalitz-plot fit

CONCLUDING REMARKS
- Amplitude parametrizations
- Outlook
- Backup slides
Outline

1. INTRODUCTION
2. FSI CONSTRAINTS
 - Basic weak interaction + chiral unitary approach
3. DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$
 - $D \rightarrow VP$ decays within SU(3) flavor symmetry
 - Fit on branching fractions of $D \rightarrow VP$ decays
 - Concluding remarks on this $D \rightarrow VP$ study
4. FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$
 - Quasi-two-body factorization for $D^0 \rightarrow K^0_S \pi^+ \pi^-$
 - Form factors
 - Dalitz-plot fit
5. CONCLUDING REMARKS
 - Amplitude parametrizations
 - Outlook
 - Backup slides
INTRODUCTION

FSI CONSTRAINTS
- Basic weak interaction + chiral unitary approach

DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$
- $D \rightarrow VP$ decays within SU(3) flavor symmetry
- Fit on branching fractions of $D \rightarrow VP$ decays
- Concluding remarks on this $D \rightarrow VP$ study

FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$
- Quasi-two-body factorization for $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
- Form factors
- Dalitz-plot fit

CONCLUDING REMARKS
- Amplitude parametrizations
- Outlook
- Backup slides
Impressive hadronic multibody decay data of D^0, D^+, D_s^+

- **Dalitz plots** → accumulations of events at different invariant masses: presence of meson resonances ⇔ interferences
- Standard model (SM): null CP asymmetries, if deviation: physics beyond SM
- D^0-\bar{D}^0 mixing: new physics?
- Multibody hadronic decays of $D_{(s)}$ mesons → microscopic flavor changing weak process: $c \to d$ and/or $c \to s$ via W meson interaction + hadronization + final state meson-meson strong interaction processes, FSI.
- Basic amplitude analyses → isobar model or sum of relativistic Breit-Wigner terms representing the different possible implied resonances + non resonant background: beyond?
 ⇒ **Theoretical constraints** on amplitudes: FSI - diagrammatic approach - QCD factorization.
Impressive hadronic multibody decay data of D^0, D^+, D^+_s

- **Dalitz plots** → accumulations of events at different invariant masses: presence of meson resonances \iff interferences
- **Standard model** (SM) : null CP asymmetries, if deviation: physics beyond SM
- D^0-\bar{D}^0 mixing: new physics?
- Multibody hadronic decays of $D_{(s)}$ mesons → microscopic flavor changing weak process: $c \to d$ and/or $c \to s$ via W meson interaction + hadronization + final state meson-meson strong interaction processes, FSI.
- Basic amplitude analyses → *isobar model* or sum of relativistic Breit-Wigner terms representing the different possible implied resonances + non resonant background: beyond?

\Rightarrow **Theoretical constraints** on amplitudes: FSI - diagrammatic approach - QCD factorization.
Impressive hadronic multibody decay data of D^0, D^+, D_s^+

- **Dalitz plots** → accumulations of events at different invariant masses: presence of meson resonances \Leftrightarrow interferences
- **Standard model (SM)**: null CP asymmetries, if deviation: physics beyond SM
- D^0-\bar{D}^0 mixing: new physics?
 - Multibody hadronic decays of $D_{(s)}$ mesons → microscopic flavor changing weak process: $c \rightarrow d$ and/or $c \rightarrow s$ via W meson interaction + hadronization + final state meson-meson strong interaction processes, FSI.
 - Basic amplitude analyses → isobar model or sum of relativistic Breit-Wigner terms representing the different possible implied resonances + non resonant background: beyond?
 - \Rightarrow **Theoretical constraints** on amplitudes: FSI - diagrammatic approach - QCD factorization.
Impressive hadronic multibody decay data of D^0, D^+, D_s^+

- **Dalitz plots** → accumulations of events at different invariant masses: presence of meson resonances \leftrightarrow interferences
- **Standard model** (SM): null CP asymmetries, if deviation: physics beyond SM
- D^0-\bar{D}^0 mixing: new physics?

Multibody hadronic decays of $D_{(s)}$ mesons → microscopic flavor changing weak process: $c \rightarrow d$ and/or $c \rightarrow s$ via W meson interaction + hadronization + final state meson-meson strong interaction processes, FSI.

- Basic amplitude analyses → isobar model or sum of relativistic Breit-Wigner terms representing the different possible implied resonances + non resonant background: beyond?

\Rightarrow **Theoretical constraints** on amplitudes: FSI - diagrammatic approach - QCD factorization.
Impressive hadronic multibody decay data of D^0, D^+, D_s^+

- **Dalitz plots** \rightarrow accumulations of events at different invariant masses: presence of meson resonances \Leftrightarrow interferences

- **Standard model (SM)**: null CP asymmetries, if deviation: physics beyond SM

- D^0-\bar{D}^0 mixing: new physics?

- Multibody hadronic decays of $D_{(s)}$ mesons \rightarrow microscopic flavor changing weak process: $c \rightarrow d$ and/or $c \rightarrow s$ via W meson interaction + hadronization + final state meson-meson strong interaction processes, FSI.

- Basic amplitude analyses \rightarrow isobar model or sum of relativistic Breit-Wigner terms representing the different possible implied resonances + non resonant background: beyond?

\Rightarrow Theoretical constraints on amplitudes: FSI - diagrammatic approach - QCD factorization.
Impressive hadronic multibody decay data of D^0, D^+, D_s^+

- **Dalitz plots** → accumulations of events at different invariant masses: presence of meson resonances ⇔ interferences
- **Standard model (SM)**: null CP asymmetries, if deviation: physics beyond SM
- D^0-\bar{D}^0 mixing: new physics?
- Multibody hadronic decays of $D_{(s)}$ mesons → microscopic flavor changing weak process: $c \rightarrow d$ and/or $c \rightarrow s$ via W meson interaction + hadronization + final state meson-meson strong interaction processes, FSI.
- Basic amplitude analyses → **isobar model** or sum of relativistic Breit-Wigner terms representing the different possible implied resonances + non resonant background: beyond?

⇒ **Theoretical constraints** on amplitudes: FSI - diagrammatic approach - QCD factorization.
Different effective hadronic formalism approaches

⇒ R. T. Aoude, P. C. Magalhães, A. C. dos Reis, M. R. Robilotta, *Multi-Meson Model applied to $D^+ \to K^+K^-K^+$*, arXiv:1604.02904, model as an alternative to isobar model, with free parameters predicted by the theory to be fine-tuned by a fit to data, to be presented by P. C. Magalhães on Wednesday afternoon.
Different effective hadronic formalism approaches

Different effective hadronic formalism approaches

⇒ R. T. Aoude, P. C. Magalhães, A. C. dos Reis, M. R. Robilotta, *Multi-Meson Model applied to D⁺ → K⁺K⁻K⁺*, arXiv:1604.02904, model as an alternative to isobar model, with free parameters predicted by the theory to be fine-tuned by a fit to data, to be presented by P. C. Magalhães on Wednesday afternoon.
Basic weak interaction + chiral unitary approach

D_s^+ decays into π^+ and $q\bar{q} \rightarrow$ two pseudoscalar mesons:

We describe in detail the work [2] - same mechanism as in [1] where branching ratios for $a_0(980)$ and $f_0(980)$ production in good agreement with experiment.

![Diagram of D_s^+ decay](image)

The $q\bar{q}$ M matrix:

$$M = \begin{pmatrix}
 u\bar{u} & u\bar{d} & u\bar{s} \\
 d\bar{u} & d\bar{d} & d\bar{s} \\
 s\bar{u} & s\bar{d} & s\bar{s}
\end{pmatrix}$$

$$M \cdot M = M \times (\bar{u}u + \bar{d}d + \bar{s}s)$$
In the standard $\eta - \eta'$ mixing the matrix M is

$$
\Phi = \begin{pmatrix}
\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{3}} \eta + \frac{1}{\sqrt{6}} \eta' \\
\pi^- \\
K^-
\end{pmatrix}
\begin{pmatrix}
\pi^+ \\
\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{3}} \eta + \frac{1}{\sqrt{6}} \eta' \\
\bar{K}^0 \\
\frac{1}{\sqrt{3}} \eta + \sqrt{\frac{2}{3}} \eta'
\end{pmatrix}
\begin{pmatrix}
K^+ \\
K^0 \\
\bar{K}^0 \\
\eta\eta
\end{pmatrix}.
$$

Neglecting η' we have:

$$
s\bar{s} (\bar{u}u + \bar{d}d + \bar{s}s) \equiv (\Phi \cdot \Phi)_{33} = K^- K^+ + \bar{K}^0 K^0 + \frac{1}{3} \eta\eta.
$$

The $K^+ K^-$ pair after rescattering can produce $\pi^+ \pi^-$ and $K^+ K^-$. The D_s^+ decay width

$$
\Gamma_{P^+ P^-}, \quad P^+ P^- \equiv K^+ K^- \quad \text{or} \quad \pi^+ \pi^- \quad \text{satisfies} \quad \frac{d\Gamma_{P^+ P^-}}{dM_{inv}} = \frac{1}{(2\pi)^3} \frac{p_\pi \bar{p}_P}{4M_{Ds}^2} |T_{P^+ P^-}|^2, \quad \text{with},
$$

$$
T_{K^+ K^-} = V_0 \left(1 + G_{K^+ K^-} t_{K^+ K^-} \rightarrow K^+ K^- + G_{K^0 \bar{K}^0} t_{K^0 \bar{K}^0} \rightarrow K^+ K^- + \frac{2}{3} \frac{1}{\sqrt{2}} G_{\eta\eta} t_{\eta\eta} \rightarrow K^+ K^- \right),
$$

$$
T_{\pi^+ \pi^-} = V_0 \left(G_{K^+ K^-} t_{K^+ K^-} \rightarrow \pi^+ \pi^- + G_{K^0 \bar{K}^0} t_{K^0 \bar{K}^0} \rightarrow \pi^+ \pi^- + \frac{2}{3} \frac{1}{\sqrt{2}} G_{\eta\eta} t_{\eta\eta} \rightarrow \pi^+ \pi^- \right).
$$

Function G_l: loop function, $G_l(s) = i \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(p-q)^2 - m_1^2 + i\epsilon} \frac{1}{q^2 - m_2^2 + i\epsilon}, m_1, m_2$: meson masses in loop l; integral on q^0 analytical; cut-off, $|\bar{q}_{\text{max}}| = 600$ MeV/c introduced in integral on \bar{q}.

B. Loiseau
CHARM 2016 - Bologna, Italy - September 05, 2016 - 6
Comparison of the $T_{\pi\pi}$ amplitude with that of the experimental data

$t_{i\rightarrow j}$: coupled-channel Bethe-Salpeter $t_{i\rightarrow j}(s) = V_{ij}(s) + \sum_{l=1}^{5} V_{il}(s) G_l(s) t_{l\rightarrow j}(s)$;

l channels \rightarrow 1: $\pi^+\pi^-$, 2: $\pi^0\pi^0$, 3: K^+K^-, 4: $K^0\bar{K}^0$, 5: $\eta\eta$. Kernel $V \rightarrow$ tree-level transition amplitudes from phenomenological Lagrangians: J. A. Oller and E. Oset, *Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the sigma, $f_0(980)$, $a_0(980)$ scalar mesons*, NPA 620, 438 (1997), NPA 652, 407 (1999).

Results: adjusting V_0 and comparing theoretical amplitudes with those available from the experimental data leads to a fair agreement. Experimental data: B. Aubert *et al.* [BABAR Collaboration], Phys. Rev. D 79 (2009) 032003.
Basic weak interaction + chiral unitary approach

Invariant mass distribution for $D_s^+ \rightarrow \pi^+\pi^-\pi^+$ (dashed line) and $D_s^+ \rightarrow \pi^+K^-K^+$ (solid line).

Results for the $f_0(980)$ signal in the spectra are (up to a global common normalization factor) predictions of the Chiral Unitary approach with no free parameters.

\Rightarrow Interesting issue: the $\pi^+\pi^0\eta$ decay mode which generates the $a_0(980)$ will lead to informations on $f_0(980)$ and $a_0(980)$ mixing.
Model-independent analysis based on flavor SU(3) symmetry.

- The *c quark mass* too high to apply chiral perturbation theory and too light to use heavy quark expansion approaches.
 - \(\Rightarrow \) Diagrammatic approach: flavor-flow diagrams with all strong interaction effects included.
 - Model-independent analysis based on flavor SU(3) symmetry \(\Rightarrow \) topological amplitudes \(\leftrightarrow \) underlying decay mechanisms.
 - Possible topologies of weak interactions: \(\Rightarrow \) Fig. 1 [Hai-Yang Cheng, Cheng-Wei Chiang, *Direct CP violation in two-body hadronic charmed meson decays*, Phys. Rev. D 85, 034036 (2012), arXiv:1201.0785]
Model-independent analysis based on flavor SU(3) symmetry.

- The c quark mass too high to apply chiral perturbation theory and too light to use heavy quark expansion approaches.
- ⇒ **Diagrammatic approach**: flavor-flow diagrams with all strong interaction effects included.
- Model-independent analysis based on flavor SU(3) symmetry ⇒ topological amplitudes ↔ underlying decay mechanisms.
Model-independent analysis based on flavor SU(3) symmetry.

- The *c* quark mass too high to apply chiral perturbation theory and too light to use heavy quark expansion approaches.

- **Diagrammatic approach**: flavor-flow diagrams with all strong interaction effects included.

- Model-independent analysis based on flavor SU(3) symmetry \(\Rightarrow\) topological amplitudes \(\leftrightarrow\) underlying decay mechanisms.

Model-independent analysis based on flavor SU(3) symmetry.

- The c quark mass too high to apply chiral perturbation theory and too light to use heavy quark expansion approaches

- \Rightarrow Diagrammatic approach: flavor-flow diagrams with all strong interaction effects included.

- Model-independent analysis based on flavor SU(3) symmetry \Rightarrow topological amplitudes \leftrightarrow underlying decay mechanisms.

- Possible topologies of weak interactions: \Rightarrow Fig. 1 [Hai-Yang Cheng, Cheng-Wei Chiang, *Direct CP violation in two-body hadronic charmed meson decays*, Phys. Rev. D 85, 034036 (2012), arXiv:1201.0785]
Model-independent analysis based on flavor SU(3) symmetry.

- The **c quark mass** too high to apply chiral perturbation theory and too light to use heavy quark expansion approaches.

- **Diagrammatic approach**: flavor-flow diagrams with all strong interaction effects included.

- Model-independent analysis based on flavor SU(3) symmetry ⇒ topological amplitudes ↔ underlying decay mechanisms.

- **Possible topologies** of weak interactions: ⇒ **Fig. 1** [Hai-Yang Cheng, Cheng-Wei Chiang, *Direct CP violation in two-body hadronic charmed meson decays*, Phys. Rev. D **85**, 034036 (2012), arXiv:1201.0785]
Flavor-flow diagrams with all strong interaction effects included.

Figure: (a) T: color-allowed tree, (b) C: color-suppressed tree, (e) E: W-exchange, (f) A: W-annihilation, (c) P: QCD-penguin, (d) S: singlet QCD-penguin with 2 (3) gluon lines for M_2 being a pseudoscalar meson P (a vector meson V), (g) PE: QCD-penguin exchange, (h) PA: QCD-penguin annihilation.
Global analysis of two-body decays.

- Within SU(3) flavor symmetry only four types of amplitudes for all \(D \rightarrow VP \) decays: color-allowed \(T \), color-suppressed \(C \), \(W \)-exchange \(E \), \(W \)-annihilation \(A \).

- Subscript \(P \) or \(V \) to each amplitude, e.g., \(T_P(V) \), denote the amplitude in which the spectator quark goes to the pseudoscalar or vector meson in the final state.

- The 8 complex amplitudes, \(T_P(V), C_P(V), E_P(V), A_P(V) \) (15 real parameters, \(T_V \) chosen to be real) determined by performing a \(\chi^2 \) fit of 16 experimental branching fractions for Cabibbo-favored decays \(\propto \) CKM factors \(Y_{sd} \equiv V_{cs}^* V_{ud} \sim O(1) \). Several solutions: favored one (A1).

Global analysis of two-body decays.

- Within **SU(3) flavor symmetry** only four types of amplitudes for all $D \to VP$ decays: color-allowed T, color-suppressed C, W-exchange E, W-annihilation A.

- Subscript P or V to each amplitude, e.g., $T_P(V)$, denote the amplitude in which the spectator quark goes to the pseudoscalar or vector meson in the final state.

- The 8 complex amplitudes, $T_P(V), C_P(V), E_P(V), A_P(V)$ (15 real parameters, T_V chosen to be real) determined by performing a χ^2 fit of 16 experimental branching fractions for Cabibbo-favored decays \propto CKM factors $Y_{sd} \equiv V_{cs}^* V_{ud} \sim O(1)$. Several solutions: favored one (A1).

Global analysis of two-body decays.

- Within SU(3) flavor symmetry only four types of amplitudes for all $D \to VP$ decays: color-allowed T, color-suppressed C, W-exchange E, W-annihilation A.
- Subscript P or V to each amplitude, e.g., $T_{P(V)}$, denote the amplitude in which the spectator quark goes to the pseudoscalar or vector meson in the final state.
- The 8 complex amplitudes, $T_{P(V)}, C_{P(V)}, E_{P(V)}, A_{P(V)}$ (15 real parameters, T_V chosen to be real) determined by performing a χ^2 fit of 16 experimental branching fractions for Cabibbo-favored decays \propto CKM factors $Y_{sd} \equiv V_{cs}^* V_{ud} \sim \mathcal{O}(1)$. Several solutions: favored one (A1).

- **Within SU(3) flavor symmetry** only four types of amplitudes for all $D \rightarrow VP$ decays: color-allowed T, color-suppressed C, W-exchange E, W-annihilation A.

- **Subscript** P or V to each amplitude, \textit{e.g.}, $T_{P(V)}$, denote the amplitude in which the spectator quark goes to the pseudoscalar or vector meson in the final state.

- The 8 complex amplitudes, $T_{P(V)}$, $C_{P(V)}$, $E_{P(V)}$, $A_{P(V)}$ (15 real parameters, T_V chosen to be real) determined by performing a χ^2 fit of 16 experimental branching fractions for Cabibbo-favored decays \propto CKM factors $Y_{sd} \equiv V_{cs}^* V_{ud} \sim \mathcal{O}(1)$. Several solutions: favored one (A1).

INTRODUCTION
FSI CONSTRAINTS
DIAGRAMMATIC APPROACH: $D \to M_1 M_2$
FACTORIZATION APPROACH: $D \to m_1 m_2 m_3$
CONCLUDING REMARKS

$D \to VP$ decays within SU(3) flavor symmetry
Fit on branching fractions of $D \to VP$ decays
Concluding remarks on this $D \to VP$ study

Fitted branching fractions for Cabibbo-favored (CF) $D^0 \to VP$ decays.

Table: Units: %, data: PDG, $Y_{sd} \equiv V_{cs}^* V_{ud}$, $s_\phi \equiv \sin \phi$, $c_\phi \equiv \cos \phi$
(mixing angle $\eta-\eta'$). For comparison $B_{(pole)}$: pole model of [YWL].

<table>
<thead>
<tr>
<th>Mode</th>
<th>Amplitudes</th>
<th>B_{exp}</th>
<th>$B_{theory}(A1)$</th>
<th>$B_{(pole)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^{*-} \pi^+$</td>
<td>$Y_{sd}(T_V + E_P)$</td>
<td>5.43 ± 0.44</td>
<td>5.45 ± 0.64</td>
<td>3.1 ± 1.0</td>
</tr>
<tr>
<td>$K^- \rho^+$</td>
<td>$Y_{sd}(T_P + E_V)$</td>
<td>11.1 ± 0.9</td>
<td>11.3 ± 2.70</td>
<td>8.8 ± 2.2</td>
</tr>
<tr>
<td>$\overline{K}^{*0} \pi^0$</td>
<td>$\frac{1}{\sqrt{2}} Y_{sd}(C_P - E_P)$</td>
<td>3.75 ± 0.29</td>
<td>3.72 ± 0.49</td>
<td>2.9 ± 1.0</td>
</tr>
<tr>
<td>$\overline{K}^0 \rho^0$</td>
<td>$\frac{1}{\sqrt{2}} Y_{sd}(C_V - E_V)$</td>
<td>$1.28^{+0.14}_{-0.16}$</td>
<td>1.30 ± 0.78</td>
<td>1.7 ± 0.7</td>
</tr>
<tr>
<td>$\overline{K}^{*0} \eta$</td>
<td>$Y_{sd}((C_P + E_P)$ \times $c_\phi/\sqrt{2} - E_V s_\phi)$</td>
<td>0.96 ± 0.30</td>
<td>0.92 ± 0.36</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>$\overline{K}^{*0} \eta'$</td>
<td>$-Y_{sd}((C_P + E_P)$ \times $s_\phi/\sqrt{2} + E_V c_\phi)$</td>
<td>< 0.11</td>
<td>0.003 ± 0.002</td>
<td>0.016 ± 0.005</td>
</tr>
<tr>
<td>$\overline{K}^0 \omega$</td>
<td>$-\frac{1}{\sqrt{2}} Y_{sd}(C_V + E_V)$</td>
<td>2.22 ± 0.12</td>
<td>2.24 ± 0.84</td>
<td>2.5 ± 0.7</td>
</tr>
<tr>
<td>$\overline{K}^0 \phi$</td>
<td>$-Y_{sd}E_P$</td>
<td>$0.847^{+0.066}_{-0.034}$</td>
<td>0.848 ± 0.050</td>
<td>0.80 ± 0.2</td>
</tr>
</tbody>
</table>
Fitted branching fractions for Cabibbo-favored $D_s^{+} \rightarrow VP$ **decays**.

Table: Recent measurement of $D_s^{+} \rightarrow \pi^+ \rho^0 \Rightarrow A_{P,V}$. Units: %, data: PDG but $B_{\rho^+ \eta'}$, from BESIII Coll., Phys. Lett. B 750, 466 (2015).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Amplitude</th>
<th>B_{exp}</th>
<th>$B_{theory}(A1)$</th>
<th>B(pole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{K}^{*0} \pi^+$</td>
<td>$Y_{sd}(T_V + C_P)$</td>
<td>1.57 ± 0.13</td>
<td>1.57 ± 0.25</td>
<td>1.4 ± 1.3</td>
</tr>
<tr>
<td>$\bar{K}^0 \rho^+$</td>
<td>$Y_{sd}(T_P + C_V)$</td>
<td>$12.08^{+1.20}_{-0.68}$</td>
<td>12.15 ± 11.69</td>
<td>15.1 ± 3.8</td>
</tr>
<tr>
<td>$D_s^{+} \rightarrow VP$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{K}^{*0} K^+$</td>
<td>$Y_{sd}(C_P + A_V)$</td>
<td>3.92 ± 0.14</td>
<td>3.92 ± 1.13</td>
<td>4.2 ± 1.7</td>
</tr>
<tr>
<td>$\bar{K}^0 K^{*+}$</td>
<td>$Y_{sd}(C_V + A_P)$</td>
<td>5.4 ± 1.2</td>
<td>4.38 ± 1.19</td>
<td>1.0 ± 0.6</td>
</tr>
<tr>
<td>$\rho^+ \pi^0$</td>
<td>$\frac{1}{\sqrt{2}} Y_{sd}(A_P - A_V)$</td>
<td>—</td>
<td>0.021 ± 0.087</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>$\rho^+ \eta$</td>
<td>$- Y_{sd}((A_P + A_V)$</td>
<td>8.9 ± 0.8</td>
<td>8.85 ± 1.69</td>
<td>8.3 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>$\times \frac{1}{\sqrt{2}}c_\phi - T_P s_\phi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho^+ \eta'$</td>
<td>$Y_{sd}((A_P + A_V)$</td>
<td>5.80 ± 1.46</td>
<td>2.75 ± 0.46</td>
<td>3.0 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>$\times \frac{1}{\sqrt{2}}s_\phi + T_P c_\phi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^+ \rho^0$</td>
<td>$\frac{1}{\sqrt{2}} Y_{sd}(A_V - A_P)$</td>
<td>0.020 ± 0.012</td>
<td>0.021 ± 0.087</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>$\pi^+ \omega$</td>
<td>$\frac{1}{\sqrt{2}} Y_{sd}(A_V + A_P)$</td>
<td>0.24 ± 0.06</td>
<td>0.24 ± 0.15</td>
<td>0</td>
</tr>
<tr>
<td>$\pi^+ \phi$</td>
<td>$Y_{sd} T_V$</td>
<td>4.5 ± 0.4</td>
<td>4.49 ± 0.40</td>
<td>4.3 ± 0.6</td>
</tr>
</tbody>
</table>
Cabibbo-favored amplitudes resulting from the branching fraction fit.

Table: Fit results (solution A1) \(\phi = 43.5^\circ \). Units: \(10^{-6} \), strong phases in degrees. \(|T_V| = 4.21^{+0.18}_{-0.19} \).

| \(|T_P| \) | \(\delta_{T_P} \) | \(|C_V| \) | \(\delta_{C_V} \) | \(|C_P| \) | \(\delta_{C_P} \) | \(|E_V| \) |
|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 8.46^{+0.22}_{-0.25} | 57^{+35}_{-41} | 4.09^{+0.16}_{-0.25} | -145^{+29}_{-39} | 4.08^{+0.37}_{-0.36} | -157 \pm 2 | 1.19^{+0.64}_{-0.46} |

| \(\delta_{E_V} \) | \(|E_P| \) | \(\delta_{E_P} \) | \(|A_P| \) | \(\delta_{A_P} \) | \(|A_V| \) | \(\delta_{A_V} \) |
|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| -85^{+42}_{-39} | 3.06 \pm 0.09 | 98 \pm 5 | 0.64^{+0.14}_{-0.27} | 152^{+48}_{-50} | 0.52^{+0.24}_{-0.19} | 122^{+70}_{-42} |

- **Modulus** of color-allowed tree \(T_P \) amplitude is the **largest**.
- **Moduli** of the \(W \)-annihilation \(A_P(V) \) amplitudes are the **smallest**.
INTRODUCTION
FSI CONSTRAINTS
DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$
FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$
CONCLUDING REMARKS

$D \rightarrow VP$ decays within SU(3) flavor symmetry

Fit on branching fractions of $D \rightarrow VP$ decays

Concluding remarks on this $D \rightarrow VP$ study

Predictions for some singly Cabibbo-suppressed decays,

Table: Units of 10^{-3}. $Y_d \equiv V_{cd}^* V_{ud} \sim \mathcal{O}(\lambda)$, $Y_s \equiv V_{cs}^* V_{us} \sim \mathcal{O}(\lambda)$, $\lambda = 0.22543$ (CKMfitter). No SU(3) breaking: $T' \equiv T$ etc

<table>
<thead>
<tr>
<th>Mode</th>
<th>Amplitude</th>
<th>\mathcal{B}_{exp}</th>
<th>$\mathcal{B}_{\text{theory}}(A1)$</th>
<th>\mathcal{B}(pole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow VP$</td>
<td>$\pi^+ \rho^-$: $Y_d(T'_V + E'_P)$</td>
<td>5.09 ± 0.34</td>
<td>3.61 ± 0.43</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>$\pi^- \rho^+$: $Y_d(T'_P + E'_V)$</td>
<td>10.0 ± 0.6</td>
<td>8.73 ± 2.09</td>
<td>10.2 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>$\pi^0 \phi$: $\frac{1}{\sqrt{2}} Y_s C'_P$</td>
<td>1.35 ± 0.10</td>
<td>0.77 ± 0.14</td>
<td>1.0 ± 0.3</td>
</tr>
<tr>
<td>$D^+ \rightarrow VP$</td>
<td>$\pi^+ \rho^0$: $\frac{1}{\sqrt{2}} Y_d(T'_V + C'_P - A'_P + A'_V)$</td>
<td>0.84 ± 0.15</td>
<td>0.51 ± 0.28</td>
<td>0.8 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>$K^+\bar{K}^{*0}$: $Y_d A'_V + Y_s T'_V$</td>
<td>$3.84^{+0.14}_{-0.23}$</td>
<td>4.00 ± 0.82</td>
<td>4.1 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>$\bar{K}^0 K^{*+}$: $Y_d A'_P + Y_s T'_P$</td>
<td>34 ± 16</td>
<td>14.45 ± 2.45</td>
<td>12.4 ± 2.4</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow VP$</td>
<td>$\pi^+ K^{*0}$: $Y_d T'_V + Y_s A'_V$</td>
<td>2.13 ± 0.36</td>
<td>3.51 ± 0.72</td>
<td>1.5 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>$K^+ \rho^0$: $\frac{1}{\sqrt{2}} (Y_d C'_P - Y_s A'_P)$</td>
<td>2.5 ± 0.4</td>
<td>1.58 ± 0.38</td>
<td>1.0 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>$K^+ \phi$: $Y_s(T'_V + C'_P + A'_V)$</td>
<td>0.164 ± 0.041</td>
<td>0.111 ± 0.060</td>
<td>0.3 ± 0.3</td>
</tr>
</tbody>
</table>
INTRODUCTION

FSI CONSTRAINTS

DIAGRAMMATIC APPROACH: \(D \rightarrow M_1 M_2 \)

FACTORIZATION APPROACH: \(D \rightarrow m_1 m_2 m_3 \)

CONCLUDING REMARKS

Predictions for some doubly Cabibbo-suppressed decays. No SU(3) breaking: \(T'' \equiv T \) etc....

<table>
<thead>
<tr>
<th>Table: Units: (10^{-4}). (Y_{ds} \equiv V_{cd}^* V_{us} \sim O(\lambda^2)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meson</td>
</tr>
<tr>
<td>(D^0)</td>
</tr>
<tr>
<td>(\phi K^0)</td>
</tr>
<tr>
<td>(D^+)</td>
</tr>
<tr>
<td>(K^{*+} \pi^0)</td>
</tr>
<tr>
<td>(\rho^0 K^+)</td>
</tr>
<tr>
<td>(D_s^+)</td>
</tr>
<tr>
<td>(K^{*0} K^+)</td>
</tr>
</tbody>
</table>

- Doubly Cabibbo-suppressed channels: good agreement with data.
- Singly Cabibbo-suppressed \(\propto Y_d \equiv V_{cd}^* V_{ud} \) and \(\propto Y_s \equiv V_{cs}^* V_{us} \) have flavor SU(3) symmetry breaking effects.
Exact flavor SU(3) describes reasonably well the available data.

- If T and C amplitudes factorizable \Rightarrow effective Wilson coefficients $a_{1,2}$, $|a_2/a_1|$ and $\arg(a_2/a_1)$ (see next Section) from Cabibbo-favored $D^+ \rightarrow K^*\pi^+$ and $K^0\rho^+$ [solutions (A1)]

<table>
<thead>
<tr>
<th></th>
<th>$K^*\pi^+$</th>
<th>$K^0\rho^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a_1</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>a_2</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>a_2/a_1</td>
<td>$</td>
</tr>
<tr>
<td>$\arg(a_2/a_1)$</td>
<td>$-(157 \pm 2)^\circ$</td>
<td>$(158 \pm 51)^\circ$</td>
</tr>
</tbody>
</table>

- SU(3) symmetry breaking in color-allowed T and color-suppressed C tree amplitudes needed in general to have a better agreement with experiment.

\rightarrow Nevertheless, the exact flavor SU(3)-symmetric approach alone is adequate to provide an overall explanation for the current data.
Factorization in D decays: phenomenological approach

- QCD factorization beyond naive factorization \rightarrow expansion in α_s and $1/m_b$

- In D decays, $m_c \sim m_b/3$ \rightarrow significant corrections to the factorized results. \Rightarrow factorization phenomenological approach, based on the seminal work by Bauer, Stech and Wirbel [Exclusive Non-Leptonic Decays of D-, D_s- and B-Mesons], Z. Phys. C 34, 103 (1987).

- Applied successfully to D decays, treating Wilson coefficients as phenomenological parameters to account for non-factorizable corrections.

- No factorization theorem for three-body decays but important contributions from intermediate resonances as $\rho(770)$, $K^*(892)$ and $\phi(1020)$ \Rightarrow three-body decays quasi-two-body decays.

- Two of the three final-state mesons form a single state originating from a quark-antiquark pair. This hypothesis leads to a quasi-two-body final state to which the factorization procedure is applied.

 \Rightarrow Dalitz plot studies of $D^0 \to K^0_S \pi^+ \pi^-$ [J.-P. Dedonder, R. R Kamiński, L. Leśniak, B. L., Phys. Rev. D 89, 094018 (2014), arXiv:1403.2971].
Factorization in D decays: phenomenological approach

- QCD factorization beyond naive factorization \rightarrow expansion in α_s and $1/m_b$

- In D decays, $m_c \sim m_b/3$ \rightarrow significant corrections to the factorized results. \Rightarrow factorization phenomenological approach, based on the seminal work by Bauer, Stech and Wirbel [Exclusive Non-Leptonic Decays of D-, D_s- and B-Mesons], Z. Phys. C 34, 103 (1987).

- Applied successfully to D decays, treating Wilson coefficients as phenomenological parameters to account for non-factorizable corrections.

- No factorization theorem for three-body decays but important contributions from intermediate resonances as $\rho(770)$, $K^*(892)$ and $\phi(1020)$ \Rightarrow three-body decays quasi-two-body decays.

- Two of the three final-state mesons form a single state originating from a quark-antiquark pair. This hypothesis leads to a quasi-two-body final state to which the factorization procedure is applied.

\Rightarrow Dalitz plot studies of $D^0 \rightarrow K_S^0\pi^+\pi^-$ [J.-P. Dedonder, R. R Kamiński, L. Leśniak, B. L., Phys. Rev. D 89, 094018 (2014), arXiv:1403.2971].
Factorization in D decays: phenomenological approach

- QCD factorization beyond naive factorization \rightarrow expansion in α_s and $1/m_b$

- In D decays, $m_c \sim m_b/3$ \rightarrow significant corrections to the factorized results. \Rightarrow factorization phenomenological approach, based on the seminal work by Bauer, Stech and Wirbel [Exclusive Non-Leptonic Decays of D-, D_s- and B-Mesons], Z. Phys. C 34, 103 (1987).

- Applied successfully to D decays, treating Wilson coefficients as phenomenological parameters to account for non-factorizable corrections.

- No factorization theorem for three-body decays but important contributions from intermediate resonances as $\rho(770)$, $K^*(892)$ and $\phi(1020)$ \Rightarrow three-body decays quasi-two-body decays.

- Two of the three final-state mesons form a single state originating from a quark-antiquark pair. This hypothesis leads to a quasi-two-body final state to which the factorization procedure is applied.

\Rightarrow Dalitz plot studies of $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ [J.-P. Dedonder, R. R Kamiński, L. Leśniak, B. L., Phys. Rev. D 89, 094018 (2014), arXiv:1403.2971].
Factorization in D decays: phenomenological approach

- QCD factorization beyond naive factorization \rightarrow expansion in α_s and $1/m_b$

- In D decays, $m_c \sim m_b/3$ \rightarrow significant corrections to the factorized results. \Rightarrow factorization phenomenological approach, based on the seminal work by Bauer, Stech and Wirbel [Exclusive Non-Leptonic Decays of D-, D_s- and B-Mesons], Z. Phys. C 34, 103 (1987).

- Applied successfully to D decays, treating Wilson coefficients as phenomenological parameters to account for non-factorizable corrections.

- No factorization theorem for three-body decays but important contributions from intermediate resonances as $\rho(770)$, $K^*(892)$ and $\phi(1020)$ \Rightarrow three-body decays quasi-two-body decays.

- Two of the three final-state mesons form a single state originating from a quark-antiquark pair. This hypothesis leads to a quasi-two-body final state to which the factorization procedure is applied.

\Rightarrow Dalitz plot studies of $D^0 \rightarrow K^0_S \pi^+ \pi^-$ [J.-P. Dedonder, R. R Kamiński, L. Leśniak, B. L., Phys. Rev. D 89, 094018 (2014), arXiv:1403.2971].
Factorization in D decays: phenomenological approach

- QCD factorization beyond naive factorization → expansion in α_s and $1/m_b$
 applied with success to charmless nonleptonic two-body B decays
 [M. Beneke, M. Neubert, QCD factorization for $B \to PP$ and $B \to PV$ decays

- In D decays, $m_c \sim m_b/3$ → significant corrections to the factorized results. ⇒
 factorization phenomenological approach, based on the seminal work by Bauer,
 Stech and Wirbel [Exclusive Non-Leptonic Decays of D-, D_s- and B-Mesons],
 Z. Phys. C 34, 103 (1987)].

- Applied successfully to D decays, treating Wilson coefficients as
 phenomenological parameters to account for non-factorizable corrections.

- No factorization theorem for three-body decays but important contributions from
 intermediate resonances as $\rho(770)$, $K^*(892)$ and $\phi(1020)$ ⇒ three-body decays
 quasi-two-body decays.

- Two of the three final-state mesons form a single state originating from a
 quark-antiquark pair. This hypothesis leads to a quasi-two-body final state to
 which the factorization procedure is applied.

 ⇒ Dalitz plot studies of $D^0 \to K^0_S\pi^+\pi^-$ [J.-P. Dedonder, R. R Kamiński,
Factorization in D decays: phenomenological approach

- QCD factorization beyond naive factorization → expansion in α_s and $1/m_b$

- In D decays, $m_c \sim m_b/3$ → significant corrections to the factorized results. ⇒ factorization phenomenological approach, based on the seminal work by Bauer, Stech and Wirbel [Exclusive Non-Leptonic Decays of D, D_s- and B-Mesons], Z. Phys. C 34, 103 (1987)].

- Applied successfully to D decays, treating Wilson coefficients as phenomenological parameters to account for non-factorizable corrections.

- No factorization theorem for three-body decays but important contributions from intermediate resonances as $\rho(770)$, $K^*(892)$ and $\phi(1020) \Rightarrow$ three-body decays quasi-two-body decays.

- Two of the three final-state mesons form a single state originating from a quark-antiquark pair. This hypothesis leads to a quasi-two-body final state to which the factorization procedure is applied.

⇒ Dalitz plot studies of $D^0 \to K_S^0 \pi^+ \pi^-$ [J.-P. Dedonder, R. R Kamiński, L. Leśniak, B. L., Phys. Rev. D 89, 094018 (2014), arXiv:1403.2971].
Weak effective Hamiltonian

- No penguin (W-loop diagram) in $D^0 \to K_S^0 \pi^+ \pi^-$, then

\[
H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{i=1,2} C_i(\mu) O_i(\mu) + h.c.
\]

- V_{CKM}: quark mixing couplings, $G_F = 1.166 \times 10^{-5}$ GeV$^{-2}$: Fermi coupling, $C_i(\mu)$: QCD Wilson coefficients (W exchange), μ: renormalization scale, $\mu \sim m_c = 1.3$ GeV (charm quark mass).

- $O_{1,2}$ are left-handed quark current-current operators, e.g. (α and β color indices)

\[
O_1 = j_1 \otimes j_2, \quad j_1 = \bar{s}_\alpha \gamma^\nu (1 - \gamma^5) c_\alpha \equiv (\bar{s}c)_{V-A}, \quad j_2 = \bar{u}_\beta \gamma^\nu (1 - \gamma^5) d_\beta \equiv (\bar{u}d)_{V-A}.
\]

- In the amplitude and at leading order in α_s, the following real effective QCD coefficients $a_1(m_c)$ and $a_2(m_c)$ will appear,

\[
a_1(m_c) = C_1(m_c) + \frac{C_2(m_c)}{N_C}, \quad a_2(m_c) = C_2(m_c) + \frac{C_1(m_c)}{N_C}, \quad N_C = 3
\]

being the number of colors (from now on $a_i(m_c) \equiv a_i, i = 1, 2$).
Weak effective Hamiltonian

No penguin (W-loop diagram) in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$, then

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{i=1,2} C_i(\mu) O_i(\mu) + h.c.$$

V_{CKM}: quark mixing couplings, $G_F = 1.166 \times 10^{-5}$ GeV$^{-2}$: Fermi coupling, $C_i(\mu)$: QCD Wilson coefficients (W exchange), μ: renormalization scale, $\mu \sim m_c = 1.3$ GeV (charm quark mass).

$O_{1,2}$ are left-handed quark current-current operators, e.g. (α and β color indices)

$$O_1 = j_1 \otimes j_2, \quad j_1 = \bar{s}_\alpha \gamma^\nu (1 - \gamma^5) c_\alpha \equiv (\bar{s}c)_{V-A}, \quad j_2 = \bar{u}_\beta \gamma^\nu (1 - \gamma^5) d_\beta \equiv (\bar{u}d)_{V-A}.$$

In the amplitude and at leading order in α_s, the following real effective QCD coefficients $a_1 (m_c)$ and $a_2 (m_c)$ will appear,

$$a_1 (m_c) = C_1 (m_c) + \frac{C_2 (m_c)}{N_C}, \quad a_2 (m_c) = C_2 (m_c) + \frac{C_1 (m_c)}{N_C},$$

$N_C = 3$ being the number of colors (from now on $a_i (m_c) \equiv a_i, i = 1,2$).
Weak effective Hamiltonian

- No penguin (W-loop diagram) in $D^0 \rightarrow K^0_S \pi^+ \pi^-$, then

\[H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{i=1,2} C_i(\mu) O_i(\mu) + h.c. \]

- V_{CKM}: quark mixing couplings, $G_F = 1.166 \times 10^{-5}$ GeV$^{-2}$: Fermi coupling, $C_i(\mu)$: QCD Wilson coefficients (W exchange), μ: renormalization scale, $\mu \sim m_c = 1.3$ GeV (charm quark mass).
- $O_{1,2}$ are left-handed quark current-current operators, e.g. (α and β color indices)

\[O_1 = j_1 \otimes j_2, \quad j_1 = \bar{s}_\alpha \gamma^\nu (1 - \gamma^5) c_\alpha \equiv (\bar{s}c)_{V-A}, \quad j_2 = \bar{u}_\beta \gamma^\nu (1 - \gamma^5) d_\beta \equiv (\bar{u}d)_{V-A}. \]

- In the amplitude and at leading order in α_s, the following real effective QCD coefficients $a_1(m_c)$ and $a_2(m_c)$ will appear,

\[a_1(m_c) = C_1(m_c) + \frac{C_2(m_c)}{N_C}, \quad a_2(m_c) = C_2(m_c) + \frac{C_1(m_c)}{N_C}, \]

$N_C = 3$ being the number of colors (from now on $a_i(m_c) \equiv a_i, i = 1, 2$).
Operator Product Expansion + large W mass \Rightarrow two-body factorization approximation

\[\text{Factorization: } \langle M_1 M_2 | O_i(\mu) | D^0 \rangle = \langle M_1 | j_1 | 0 \rangle \langle M_2 | j_2 | D^0 \rangle + \text{higher order corrections} \]

- No three-body factorization scheme \Rightarrow \text{quasi-two-body approximation:}

\[\bar{K}^0 \pi^+ \pi^- \simeq [\bar{K}^0 \pi^\pm]_L \pi^\mp \text{ or } \bar{K}^0 [\pi^+ \pi^-]_L \]

- e.g. \(M_1 = [\pi^+ K^0]_L, M_2 = \pi^- \) or \(M_1 = \bar{K}^0, M_2 = [\pi^+ \pi^-]_L \)

\rightarrow \text{the state } [m_1 m_2]_L \text{ in } L = S, P \text{ or } D \text{ wave originates from a } q' \bar{q} \text{ state.}

- For instance, with \(V_{CKM} = V_{CS}^* V_{ud} \equiv \Lambda_1: \langle \bar{K}^0 h^- h^+ | H_{\text{eff}} | D^0 \rangle \Rightarrow \)

\[G_F \Lambda_1 a_2 \left\langle \bar{K}^0 | (\bar{s}d)_{V-A} | 0 \right\rangle \left\langle [\pi^+ \pi^-]_L | (\bar{u}c)_{V-A} | D^0 \right\rangle \propto \text{if}_{K^0} p_{K^0} \cdot \left\langle \bar{D}^0 [\pi^+ \pi^-]_L | (\bar{u}c)_{V-A} | 0 \right\rangle \]

- Decay constant ↑

- Transition form factor ↑

- If \(M_1 = [\pi^+ K^0]_L \leftrightarrow \text{Form Factor } \langle [\pi^+ K^0]_L | (\bar{s}u)_{V-A} | 0 \rangle : [\pi^+ K^0]_L \text{ interaction} \)
Operator Product Expansion + large W mass ⇒ two-body factorization approximation

No three-body factorization scheme ⇒ quasi-two-body approximation:

\[\bar{K}^0 \pi^+ \pi^- \simeq [\bar{K}^0 \pi^\pm]_L \pi^\mp \text{ or } \bar{K}^0 [\pi^+ \pi^-]_L \]

e.g. \(M_1 = [\pi^+ K^0]_L, M_2 = \pi^- \) or \(M_1 = \bar{K}^0, M_2 = [\pi^+ \pi^-]_L \)

→ the state \([m_1 m_2]_L \) in \(L = S, P \) or \(D \) wave originates from a \(q' \bar{q} \) state.

For instance, with \(V_{CKM} = V_{cs}^* V_{ud} \equiv \Lambda_1 \):

\[G_F \Lambda_1 a_2 \left\langle \bar{K}^0 | (\bar{s}d)_{V-A} | 0 \right\rangle \left\langle [\pi^+ \pi^-]_L | (\bar{u}c)_{V-A} | D^0 \right\rangle \propto i f_{K^0} p_{K^0} \cdot \left\langle D^0 [\pi^+ \pi^-]_L | (\bar{u}c)_{V-A} | 0 \right\rangle \]

Decay constant ↑ Transition form factor ↑

If \(M_1 = [\pi^+ K^0]_L \) ↔ Form Factor \(\left\langle [\pi^+ K^0]_L | (\bar{s}u)_{V-A} | 0 \right\rangle : [\pi^+ K^0]_L \) interaction
Quasi-two-body factorization for $D^0 \to K_S^0 \pi^+ \pi^-$

Form factors

Dalitz-plot fit

Operator Product Expansion + large W mass ⇒ two-body factorization approximation

Factorization: $\langle M_1 M_2 | O_i(\mu) | D^0 \rangle = \langle M_1 | j_1 | 0 \rangle \langle M_2 | j_2 | D^0 \rangle + \text{higher order corrections}$

- No three-body factorization scheme ⇒ **quasi-two-body approximation**:

 $\bar{K}^0 \pi^+ \pi^- \simeq [\bar{K}^0 \pi^\pm]_L \pi^\mp$ or $\bar{K}^0 [\pi^+ \pi^-]_L$

 e.g. $M_1 = [\pi^+ K^0]_L$, $M_2 = \pi^-$ or $M_1 = \bar{K}^0$, $M_2 = [\pi^+ \pi^-]_L$

 \to the state $[m_1 m_2]_L$ in $L = S, P$ or D wave originates from a $q' \bar{q}$ state.

- For instance, with $V_{CKM} = V_{cs}^* V_{ud} \equiv \Lambda_1$:

 $G_F \Lambda_1 a_2 \left\langle \bar{K}^0 | (\bar{s}d)_{V-A} | 0 \right\rangle \left\langle [\pi^+ \pi^-]_L | (\bar{u}c)_{V-A} | D^0 \right\rangle \propto i f_{K^0 p_{K^0}} \cdot \left\langle \bar{D}^0 [\pi^+ \pi^-]_L | (\bar{u}c)_{V-A} | 0 \right\rangle$

 Decay constant \uparrow Transition form factor \uparrow

- If $M_1 = [\pi^+ K^0]_L \leftrightarrow$ Form Factor $\langle [\pi^+ K^0]_L | (\bar{s}u)_{V-A} | 0 \rangle : [\pi^+ K^0]_L$ interaction
Quasi-two-body factorization for $D^0 \to K_S^0 \pi^+ \pi^-$

Form factors

Dalitz-plot fit

Resonance contributions [note: $s = (p_1 + p_2)^2$, $s_{\pm} = (p_{\pi \pm} + p_{K^0})^2$, $s_0 = (p_{\pi^+} + p_{\pi^-})^2$]

Contribution of resonances, e.g. from $q \bar{u}$, in a given $[m_1 m_2]_L$ channel:

$$\langle [m_1 m_2]_L | (\bar{q} c)_{V-A} | D^0 \rangle \simeq \sum_{R_L} F^{D^0 R_L} (m_{m_3}^2) G_{R_L} (s) \langle R_L^{[m_1 m_2]} | q \bar{u} \rangle$$

$$\simeq c_{R_L} \chi \sum_{R_L} F^{D^0 R_L} (m_{m_3}^2) \langle [m_1 m_2]_L | (q \bar{u})_{V-A} | 0 \rangle \simeq c_{R_L} \chi F^{D^0 \bar{R}_L} (m_{m_3}^2) F^{m_1 m_2} (s).$$

$$G_{R_L} (s) = \chi \langle [m_1 m_2]_L | (q \bar{u})_{V-A} | 0 \rangle$$

$$c_{R_L} = \langle R_L^{[m_1 m_2]} | q \bar{u} \rangle,$$ \bar{R}_L: L-wave dominant resonance

With $L = S$, $q = u$, $m_3 = \bar{K}^0$, $m_1 = \pi^+$, $m_2 = \pi^-$, $\bar{R}_S = f_0 (980)$, $c_{f_0} = 1/\sqrt{2}$:

$$F^{[\text{Cabibbo Favored}]}_{\bar{K}^0 [\pi^+ \pi^-]} (s_0, s_-, s_+) = -\frac{G_F}{2} a_2 \Lambda_1 \chi (m_{D^0}^2 - s_0) f_{K^0} F^{D^0 f_0 (980)} (m_{K^0}^2) F_{\pi^+ \pi^-} (s_0)$$

\to Form factor $F_{\pi^+ \pi^-} (s_0)$ includes contribution of $f_0 (500), f_0 (980), f_0 (1400)$

\to If a resonance is largely dominant, like the $\rho (770)^0$ in $[\pi^+ \pi^-]$ then $\chi \propto 1/f_{\rho}$
Resonance contributions [note: $s = (p_1 + p_2)^2$, $s_\pm = (p_{\pi\pm} + p_{K^0})^2$, $s_0 = (p_{\pi^+} + p_{\pi^-})^2$]

- Contribution of resonances, e.g. from $q\bar{u}$, in a given $[m_1 m_2]_L$ channel:

$$
\langle [m_1 m_2]_L |(\bar{q}c)_V\ A| D^0 \rangle \simeq \sum_{R_L} F^{D^0 R_L}(m_{m_3}^2) G_{R_L}(s) \langle R_L^{[m_1 m_2]} | q\bar{u} \rangle
$$

$$
\simeq c_{R_L} \chi \sum_{R_L} F^{D^0 R_L}(m_{m_3}^2) \langle [m_1 m_2]_L |(\bar{q}u)_V - A| 0 \rangle \simeq c_{R_L} \chi F^{D^0 \bar{R}_L}(m_{m_3}^2) F^{m_1 m_2}_L(s).
$$

$$
G_{R_L}(s) = \chi \langle [m_1 m_2]_L |(\bar{q}u)_V - A| 0 \rangle
$$

$$
c_{R_L} = \langle R_L^{[m_1 m_2]} | q\bar{u} \rangle, \ \bar{R}_L: \text{L-wave dominant resonance}
$$

- With $L = S$, $q = u$, $m_3 = K^0$, $m_1 = \pi^+$, $m_2 = \pi^-$, $\bar{R}_S = f_0(980)$, $c_{f_0} = 1/\sqrt{2}$:

$$
T^{[\text{Cabibbo Favored}]}_{K^0 [\pi^+ \pi^-]}(s_0, s_-, s_+) = -\frac{G_F}{2} a_2 \Lambda_1 \chi (m_{D^0}^2 - s_0) f_{K^0} F^{D^0 f_0(980)}(m_{K^0}^2) F_{0}^{\pi^+ \pi^-}(s_0)
$$

- Form factor $F_{0}^{\pi^+ \pi^-}(s_0)$ includes contribution of $f_0(500)$, $f_0(980)$, $f_0(1400)$

- If a resonance is largely dominant, like the $\rho(770)^0$ in $[\pi^+ \pi^-]_P$ then $\chi \propto 1/f_{\rho}$
Resonance contributions [note: \(s = (p_1 + p_2)^2, s_\pm = (p_\pi^\pm + p_{K^0})^2, s_0 = (p_{\pi^+} + p_{\pi^-})^2 \)]

- Contribution of resonances, e.g. from \(q\bar{u} \), in a given \([m_1 m_2]_L \) channel:
 \[
 \langle [m_1 m_2]_L | (\bar{q}c)_{V-A} | D^0 \rangle \approx \sum_{R_L} F^{D^0} R_L (m_{m_3}^2) G_{R_L} (s) \langle R_L^{[m_1 m_2]} | q\bar{u} \rangle
 \]

\[
\approx c_{R_L} \chi \sum_{R_L} F^{D^0} R_L (m_{m_3}^2) \langle [m_1 m_2]_L | (q\bar{u})_{V-A} | 0 \rangle \approx c_{R_L} \chi F^{D^0} \tilde{R}_L (m_{m_3}^2) F^{m_1 m_2}_L (s).
\]

\[
G_{R_L} (s) = \chi \langle [m_1 m_2]_L | (q\bar{u})_{V-A} | 0 \rangle
\]

\[
c_{R_L} = \langle R_L^{[m_1 m_2]} | q\bar{u} \rangle, \text{ } \tilde{R}_L: \text{ L-wave dominant resonance}
\]

- With \(L = S, q = u, m_3 = \bar{K}^0, m_1 = \pi^+, m_2 = \pi^-, \tilde{R}_S = f_0(980), c_{f_0} = 1/\sqrt{2} \):

\[
T_{[\text{Cabibbo Favored}]}^{\bar{K}^0 [\pi^+ \pi^-]} (s_0, s_-, s_+) = -\frac{G_F}{2} a_2 \Lambda_1 \chi (m_{D^0}^2 - s_0) f_{K^0} F^{D^0 f_0(980)} (m_{K^0}^2) F^{\pi^+ \pi^-} (s_0)
\]

\rightarrow Form factor \(F^{\pi^+ \pi^-} (s_0) \) includes contribution of \(f_0(500), f_0(980), f_0(1400) \)

\rightarrow If a resonance is largely dominant, like the \(\rho(770) \) in \([\pi^+ \pi^-]_P \) then \(\chi \propto 1/f_\rho \)
Resonance contributions [note: $s = (p_1 + p_2)^2$, $s_\pm = (p_{\pi \pm} + p_{K^0})^2$, $s_0 = (p_{\pi^+} + p_{\pi^-})^2$]

- Contribution of resonances, e.g. from $q\bar{u}$, in a given $[m_1 m_2]_L$ channel:
 \[
 \langle [m_1 m_2]_L | (\bar{q}c)_{V-A} | D^0 \rangle \simeq \sum_{R_L} F_{D^0 R_L} (m_{m_3}^2) G_{R_L} (s) \langle R_{L [m_1 m_2]} | q\bar{u} \rangle
 \]

 \[
 \simeq c_{R_L} \chi \sum_{R_L} F_{D^0 R_L} (m_{m_3}^2) \langle [m_1 m_2]_L | (q\bar{u})_{V-A} | 0 \rangle \simeq c_{R_L} \chi F_{D^0 \bar{R}_L} (m_{m_3}^2) F^{m_1 m_2}_L (s).
 \]

 \[
 G_{R_L} (s) = \chi \langle [m_1 m_2]_L | (q\bar{u})_{V-A} | 0 \rangle
 \]

 \[
 c_{R_L} = \langle R_{L [m_1 m_2]} | q\bar{u} \rangle, \quad \bar{R}_L: \text{L-wave dominant resonance}
 \]

- With $L = S$, $q = u$, $m_3 = K^0$, $m_1 = \pi^+$, $m_2 = \pi^-$, $\bar{R}_S = f_0(980)$, $c_{f_0} = 1/\sqrt{2}$:

 \[
 T_{[\text{Cabibbo Favored}]_{\bar{K}^0 \pi^+ \pi^-}}^{[\pi^+ \pi^-]} (s_0, s_+, s_-) = -\frac{G_F}{2} a_2 \Lambda_1 \chi (m_{D^0}^2 - s_0) f_{K^0} F_{D^0 f_0(980)}^{m_2_{K^0}} F_{0}^{\pi^+ \pi^-} (s_0)
 \]

\rightarrow Form factor $F_{0}^{\pi^+ \pi^-} (s_0)$ includes contribution of $f_0(500)$, $f_0(980)$, $f_0(1400)$

\rightarrow If a resonance is largely dominant, like the $\rho(770)^0$ in $[\pi^+ \pi^-]_P$ then $\chi \propto 1/f_{\rho}$
Table: CF, Cabibbo-favored ($\propto V_{cs}^* V_{ud}$) and DCS, doubly-Cabibbo-suppressed ($\propto V_{cd}^* V_{us}$) amplitudes.

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Channel</th>
<th>Dominant resonances</th>
<th>Form Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}_{1\pi}$: CF(Tr+An)</td>
<td>$[K_0^0 \pi^+]_S \pi^+$</td>
<td>$K^_0(800)^-, K^_0(1430)^-$</td>
<td>$F^K_{\pi}(s_-)$</td>
</tr>
<tr>
<td>$\mathcal{M}_{2\pi}$: CF+DCS(Tr+An)</td>
<td>$K_0^0 [\pi^+\pi^-]_S$</td>
<td>$f_0(500), f_0(980), f_0(1400)$</td>
<td>$F^K_{\pi\pi}(s_0)$</td>
</tr>
<tr>
<td>$\mathcal{M}_{3\pi}$: CF(Tr+An)</td>
<td>$[K_0^0 \pi^-]_P \pi^+$</td>
<td>$K^*(892)^-$</td>
<td>$F^{K\pi}(s_-)$</td>
</tr>
<tr>
<td>$\mathcal{M}_{4\pi}$: CF+DCS(Tr+An)</td>
<td>$K_0^0 [\pi^+\pi^-]_P$</td>
<td>$\rho(770)^0$</td>
<td>$F^{K\pi}(s_0)$</td>
</tr>
<tr>
<td>$\mathcal{M}_{5\pi}$: CF+DCS(Tr+An)</td>
<td>$K_0^0 [\pi^+\pi^-]_\omega$</td>
<td>$\omega(782)$</td>
<td>Breit-Wigner</td>
</tr>
<tr>
<td>$\mathcal{M}_{6\pi}$: CF(Tr+An)</td>
<td>$[K_0^0 \pi^-]_D \pi^+$</td>
<td>$K^*_2(1430)^-$</td>
<td>Breit-Wigner</td>
</tr>
<tr>
<td>$\mathcal{M}_{7\pi}$: CF+DCS(Tr+An)</td>
<td>$K_0^0 [\pi^+\pi^-]_D$</td>
<td>$f_2(1270)$</td>
<td>Breit-Wigner</td>
</tr>
<tr>
<td>$\mathcal{M}_{8\pi}$: DCS(Tr+An)</td>
<td>$[K_0^0 \pi^+]_S \pi^-$</td>
<td>$K^_0(800)^+, K^_0(1430)^+$</td>
<td>$F^K_{\pi}(s_+)$</td>
</tr>
<tr>
<td>$\mathcal{M}_{9\pi}$: DCS(Tr+An)</td>
<td>$[K_0^0 \pi^+]_P \pi^-$</td>
<td>$K^*(892)^+$</td>
<td>$F^{K\pi}(s_+)$</td>
</tr>
<tr>
<td>$\mathcal{M}_{10\pi}$: DCS(An)</td>
<td>$[K_0^0 \pi^+]_D \pi^-$</td>
<td>$K^*_2(1430)^+$</td>
<td>Breit-Wigner</td>
</tr>
</tbody>
</table>

Here: $s_{\pm} = (p_{\pi^\pm} + p_{K^0})^2$, $s_0 = (p_{\pi^+} + p_{\pi^-})^2$
Unitary scalar $K\pi$ form factor used in our model for $D^0 \rightarrow K^0_S\pi^+\pi^-$

$K^*_0(800)$ $K^*_0(1430)$

$|F_{K^0\pi^-}(m)|$ (GeV) phase of $F_{K^0\pi^-}^0(\phi)(m)$ (degrees)

$|F_{K^0\pi^-}(m)|$ scalar $K\pi$ form factor

\Rightarrow Best fit with the $K\pi$ scalar form factor: Muskhelishvili-Omnès’s 2 coupled channel equations using experimental kaon-pion T matrix + chiral symmetry + asymptotic QCD constraints + $f_K/f_\pi=1.175$ [B. Moussallam private communication, see also B. El-Bennich et al. Phys. Rev. D 79, 094005 (2009)]
Unitary scalar-isoscalar $\pi\pi$ form factor $F^{\pi\pi}_0(\propto \Gamma^\pi_1)$ used in our model for $D^0 \to K^0_S \pi^+ \pi^-$

Quasi-two-body factorization for $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Form factors

Dalitz-plot fit

\[K\pi \text{ and } \pi\pi \text{ vector form factor used in our model for } D^0 \rightarrow K^0_S \pi^+ \pi^- \]

- Mass and width of the $K^*(892)$ meson are free parameters entering also in the $K\pi$ vector form factor taken from the Belle Collaboration fit to the $\tau^- \rightarrow K^0_S \pi^- \nu_\tau$ decays

- Contributions of $K^*(892)$ and $K^*(1410)$ resonances taken but not that of the $K^*(1680)$

- Alternatively to this experimental parametrization we use the model of the $K\pi$ vector form factor of D. R. Boito et al. [JHEP 1009, 031 (2010)] in which some constraints from analyticity and elastic unitarity are incorporated

- Two types of the pion vector form factor tested:
 - the experimental parametrization used by Belle Collaboration [2008] in the data analysis of $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ decays
 - the unitary parametrization of Hanhart [Phys. Lett. B 170, 710 (2012)] which also fit the $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ data
Mass and width of the $K^*(892)$ meson are free parameters entering also in the $K\pi$ vector form factor taken from the Belle Collaboration fit to the $\tau^- \to K^0_S\pi^-\nu_\tau$ decays
Contributions of $K^*(892)$ and $K^*(1410)$ resonances taken but not that of the $K^*(1680)$

Alternatively to this experimental parametrization we use the model of the $K\pi$ vector form factor of D. R. Boito et al. [JHEP 1009, 031 (2010)] in which some constraints from analyticity and elastic unitarity are incorporated

Two types of the pion vector form factor tested:
- the experimental parametrization used by Belle Collaboration [2008] in the data analysis of $\tau^- \to \pi^-\pi^0\nu_\tau$ decays
- the unitary parametrization of Hanhart [Phys. Lett. B 170, 710 (2012)] which also fit the $\tau^- \to \pi^-\pi^0\nu_\tau$ data
Quasi-two-body factorization for $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Form factors
Dalitz-plot fit

$K\pi$ and $\pi\pi$ vector form factor used in our model for $D^0 \rightarrow K^0_S \pi^+ \pi^-$

- Mass and width of the $K^*(892)$ meson are free parameters entering also in the $K\pi$ vector form factor taken from the Belle Collaboration fit to the $\tau^- \rightarrow K^0_S \pi^- \nu_\tau$ decays
Contributions of $K^*(892)$ and $K^*(1410)$ resonances taken but not that of the $K^*(1680)$

- Alternatively to this experimental parametrization we use the model of the $K\pi$ vector form factor of D. R. Boito et al. [JHEP 1009, 031 (2010)] in which some constraints from analyticity and elastic unitarity are incorporated

- Two types of the pion vector form factor tested:
 - the experimental parametrization used by Belle Collaboration [2008] in the data analysis of $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ decays
 - the unitary parametrization of Hanhart [Phys. Lett. B 170, 710 (2012)] which also fit the $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ data
Input and free parameters, here choice: $a_1 = 1.1 \quad a_2 = -0.5$

<table>
<thead>
<tr>
<th>fixed parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_0^{D^0R_S[K^0\pi^-]}(m_\pi^2)$</td>
<td>0.48</td>
</tr>
<tr>
<td>$F_0^{D^0R_S[\pi^+\pi^-]}(m_{K^0}^2)$</td>
<td>0.18</td>
</tr>
<tr>
<td>$A_0^{D^0R_P[K^0\pi^-]}(m_\pi^2)$</td>
<td>0.76</td>
</tr>
<tr>
<td>$A_0^{D^0R_P[\pi^+\pi^-]}(m_{K^0}^2)$</td>
<td>0.7</td>
</tr>
<tr>
<td>$A_0^{D^0}\omega(m_{K^0}^2)$</td>
<td>0.669</td>
</tr>
<tr>
<td>$g_{\omega\pi\pi}$</td>
<td>0.3504</td>
</tr>
<tr>
<td>$g_{f_2\pi^+\pi^-}$</td>
<td>18.55 GeV$^{-1}$</td>
</tr>
<tr>
<td>$g_{K^*\pi^-K^0\pi^-}$</td>
<td>11.72 GeV$^{-1}$</td>
</tr>
</tbody>
</table>

\Rightarrow 33 free parameters \rightarrow 14 complex: $\chi[\pi\pi]_S, \chi[\pi\pi]_S, F_0^{R_S[K^0\pi^-]\pi^+}(m_{D^0}^2)$,

$F_0^{R_S[\pi^+\pi^-]}(m_{D^0}^2)$, $A_0^{R_P[K^0\pi^-]\pi^+}(m_{D^0}^2)$, $A_0^{R_S\omega}(m_{D^0}^2)$ + 6 parameters for D-waves

+ 2 for possible charge independence violation in $M_{8\pi}$ and $M_{9\pi}$,

\rightarrow 5 real parameters: $A_0^{R_P[\pi^+\pi^-]}(m_{D^0}^2)$ + 2 for pion-scalar form factor, κ, c

+ 2 for kaon-vector form factor, $m_{K^*\mp}, \Gamma_{K^*}$.

B. Loiseau
CHARM 2016 - Bologna, Italy - September 05, 2016 - 26
INTRODUCTION

FSI CONSTRAINTS

DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$

FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$

CONCLUDING REMARKS

Quasi-two-body factorization for $D^0 \rightarrow K^0_S \pi^+ \pi^-$

Form factors

Dalitz-plot fit

Fit to Belle Dalitz plot and distribution of χ^2 values larger than 4
Branching fractions (Br) for all quasi two-body channels. $\sum \text{Br}=132.81 \% \leftrightarrow \text{interferences.}$

Table: $\mathcal{M}_{1\pi} : K_0^*(800)^-, K_0^*(1430)^-; \mathcal{M}_{2\pi} : f_0(500), f_0(980), f_0(1400); \mathcal{M}_{3\pi} : K^*(892)^-; \mathcal{M}_{4\pi} : \rho(770)^0$

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>channel</th>
<th>Br</th>
<th>tree</th>
<th>ann. low</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}_{1\pi}$</td>
<td>$[K_S^0 \pi^-]_S \pi^+$</td>
<td>$25.03 \pm 3.61 \pm 0.18$</td>
<td>8.24 ± 0.10</td>
<td>7.88 ± 0.11</td>
</tr>
<tr>
<td>$\mathcal{M}_{2\pi}$</td>
<td>$K_S^0[\pi^- \pi^+]_S$</td>
<td>$16.92 \pm 1.27 \pm 0.02$</td>
<td>14.70 ± 0.17</td>
<td>2.92 ± 0.09</td>
</tr>
<tr>
<td>$\mathcal{M}_{3\pi}$</td>
<td>$[K_S^0 \pi^-]_P \pi^+$</td>
<td>$62.72 \pm 4.45 \pm 0.15$</td>
<td>24.69 ± 5.65</td>
<td>8.74 ± 2.97</td>
</tr>
<tr>
<td>$\mathcal{M}_{4\pi}$</td>
<td>$K_S^0[\pi^- \pi^+]_P$</td>
<td>$21.96 \pm 1.55 \pm 0.06$</td>
<td>4.36 ± 0.06</td>
<td>6.74 ± 0.04</td>
</tr>
<tr>
<td>$\mathcal{M}_{5\pi}$</td>
<td>$K_S^0 \omega$</td>
<td>$0.79 \pm 0.07 \pm 0.04$</td>
<td>0.24 ± 0.01</td>
<td>0.16 ± 0.02</td>
</tr>
<tr>
<td>$\mathcal{M}_{6\pi}$</td>
<td>$[K_S^0 \pi^-]_D \pi^+$</td>
<td>$1.41 \pm 0.11 \pm 0.04$</td>
<td>$2.15 \pm 0.19 \pm 0.10$</td>
<td>$2.15 \pm 0.19 \pm 0.10$</td>
</tr>
<tr>
<td>$\mathcal{M}_{7\pi}$</td>
<td>$K_S^0[\pi^- \pi^+]_D$</td>
<td>$0.56 \pm 0.07 \pm 0.03$</td>
<td>0.07 ± 0.00</td>
<td>0.29 ± 0.02</td>
</tr>
<tr>
<td>$\mathcal{M}_{8\pi}$</td>
<td>$[K_S^0 \pi^+]_S \pi^-$</td>
<td>$0.64 \pm 0.06 \pm 0.02$</td>
<td>0.77 ± 0.15</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>$\mathcal{M}_{9\pi}$</td>
<td>$[K_S^0 \pi^+]_P \pi^-$</td>
<td>$0.64 \pm 0.06 \pm 0.02$</td>
<td>0.77 ± 0.15</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>$\mathcal{M}_{10\pi}$</td>
<td>$[K_S^0 \pi^+]_D \pi^-$</td>
<td>$0.63 \pm 0.07 \pm 0.11$</td>
<td>0</td>
<td>0.63 ± 0.11</td>
</tr>
</tbody>
</table>

- Branching fractions compare well with those of Belle 's analysis
- **Belle** $\text{Br}_{K_S^0 \sigma_1} + \text{Br}_{K_S^0 f_0(980)} + \text{Br}_{K_S^0 \sigma_2} + \text{Br}_{K_S^0 f_0(1370)} = 18.6\% \sim 16.9\%$ value
- **Annihilation** contributions can be important
FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

- From these phenomenologically successful studies ⇒ amplitude parametrizations to be readily implemented in experimental analyses.
- Two-body hadronic final state interactions taken into account in terms of unitary \(S \)- and \(P \)-wave \(\pi \pi \), \(\pi K \) and \(K\bar{K} \) form factors.
- Sound alternative to the simplistic and widely used isobar model.

⇒ Explicit amplitude expressions [4,5] for the decays \(D^+ \rightarrow \pi^- \pi^+ \pi^+ \), \(D^+ \rightarrow K^- \pi^+ \pi^+ \), \(D^0 \rightarrow K_S^0 \pi^+ \pi^- \), \(D^0 \rightarrow K_S^0 K^+ K^- \).

FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

From these phenomenologically successful studies ⇒ amplitude parametrizations to be readily implemented in experimental analyses.

Two-body hadronic final state interactions taken into account in terms of unitary S- and P-wave $\pi\pi$, πK and $K\bar{K}$ form factors.

Sound alternative to the simplistic and widely used isobar model.

⇒ Explicit amplitude expressions [4,5] for the decays $D^+ \rightarrow \pi^-\pi^+\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$, $D^0 \rightarrow K^0_S\pi^+\pi^-$, $D^0 \rightarrow K^0_S K^+K^-$.

FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

From these phenomenologically successful studies ⇒ amplitude parametrizations to be readily implemented in experimental analyses.

- Two-body hadronic final state interactions taken into account in terms of unitary S- and P-wave $\pi\pi$, πK and $K\bar{K}$ form factors.

- Sound alternative to the simplistic and widely used isobar model.

⇒ Explicit amplitude expressions [4,5] for the decays $D^+ \to \pi^-\pi^+\pi^+$, $D^+ \to K^-\pi^+\pi^+$, $D^0 \to K^0_S \pi^+\pi^-$, $D^0 \to K^0_S K^+K^-.$

Amplitude parametrizations
Outlook
Backup slides

FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

From these phenomenologically successful studies ⇒ amplitude parametrizations to be readily implemented in experimental analyses.

Two-body hadronic final state interactions taken into account in terms of unitary S- and P-wave ππ, πK and K̅K form factors.

Sound alternative to the simplistic and widely used isobar model.

⇒ Explicit amplitude expressions [4,5] for the decays
 \[D^+ \rightarrow \pi^-\pi^+\pi^+, \]
 \[D^+ \rightarrow K^-\pi^+\pi^+, \]
 \[D^0 \rightarrow K^0_S\pi^+\pi^-, \]
 \[D^0 \rightarrow K^0_S K^+K^- . \]

FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

- From these phenomenologically successful studies ⇒ amplitude parametrizations to be readily implemented in experimental analyses.
- Two-body hadronic final state interactions taken into account in terms of unitary S- and P-wave \(\pi \pi \), \(\pi K \) and \(K\bar{K} \) form factors.

- Sound alternative to the simplistic and widely used isobar model.

⇒ Explicit amplitude expressions [4,5] for the decays \(D^+ \to \pi^- \pi^+ \pi^+ \), \(D^+ \to K^- \pi^+ \pi^+ \), \(D^0 \to K_S^0 \pi^+ \pi^- \), \(D^0 \to K_S^0 K^+ K^- \).

FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

- From these **phenomenologically successful** studies \(\Rightarrow \) **amplitude parametrizations** to be readily implemented in experimental analyses.
- Two-body hadronic final state interactions taken into account in terms of **unitary S- and P-wave \(\pi \pi \), \(\pi K \) and \(K\bar{K} \) form factors**.
- Sound **alternative** to the simplistic and widely used **isobar model**.

\(\Rightarrow \) Explicit amplitude expressions [4,5] for the decays \(D^+ \rightarrow \pi^- \pi^+ \pi^+ \), \(D^+ \rightarrow K^- \pi^+ \pi^+ \), \(D^0 \rightarrow K_S^0 \pi^+ \pi^- \), \(D^0 \rightarrow K_S^0 K^+ K^- \).

FSI described in term of meson-meson form factors

Quasi two body-factorization approaches have also been performed by:

- From these phenomenologically successful studies ⇒ amplitude parametrizations to be readily implemented in experimental analyses.
- Two-body hadronic final state interactions taken into account in terms of unitary S- and P-wave $\pi \pi$, πK and $K \bar{K}$ form factors.
- Sound alternative to the simplistic and widely used isobar model.

⇒ Explicit amplitude expressions [4,5] for the decays $D^+ \rightarrow \pi^+ \pi^- \pi^+$, $D^+ \rightarrow K^- \pi^+ \pi^+$, $D^0 \rightarrow K_S^0 \pi^+ \pi^-$, $D^0 \rightarrow K_S^0 K^+ K^-$.

Improved models needed for getting out the most information from new data

Impressive amount of high quality hadronic multibody decay data of D^0, D^+, D_s^+ and in this review I described some available potentialities for constraining amplitude analyses in these charm decays:

- Final state constraints: effective-hadronic formalism approach with combination of basic elements of the weak interaction with the framework of the chiral unitary approach in coupled channel.

- Diagrammatic approach: model-independent analysis based on flavor SU(3) symmetry topological amplitudes allowing to understand the relative importance of different underlying decay mechanisms.

- Three-body decays analyzed in a phenomenological quasi-two-body factorization approach in which two-body hadronic final state interactions are fully taken into account in terms of unitary form factors.
Improved models needed for getting out the most information from new data

Impressive amount of high quality hadronic multibody decay data of D^0, D^+, D_s^+ and in this review I described some available potentialities for constraining amplitude analyses in these charm decays:

- Final state constraints: effective-hadronic formalism approach with combination of basic elements of the weak interaction with the framework of the chiral unitary approach in coupled channel.

- Diagrammatic approach: model-independent analysis based on flavor SU(3) symmetry topological amplitudes allowing to understand the relative importance of different underlying decay mechanisms.

- Three-body decays analyzed in a phenomenological quasi-two-body factorization approach in which two-body hadronic final state interactions are fully taken into account in terms of unitary form factors.
Improved models needed for getting out the most information from new data

Impressive amount of high quality hadronic multibody decay data of D^0, D^+, D_s^+ and in this review I described some available potentialities for constraining amplitude analyses in these charm decays:

- **Final state constraints:** effective-hadronic formalism approach with combination of basic elements of the weak interaction with the framework of the chiral unitary approach in coupled channel.

- **Diagrammatic approach:** model-independent analysis based on flavor SU(3) symmetry topological amplitudes allowing to understand the relative importance of different underlying decay mechanisms.

- **Three-body decays** analyzed in a phenomenological quasi-two-body factorization approach in which two-body hadronic final state interactions are fully taken into account in terms of unitary form factors.
Improved models needed for getting out the most information from new data

Impressive amount of high quality hadronic multibody decay data of D^0, D^+, D_s^+ and in this review I described some available potentialities for constraining amplitude analyses in these charm decays:

- **Final state constraints**: effective-hadronic formalism approach with combination of basic elements of the weak interaction with the framework of the chiral unitary approach in coupled channel.

- **Diagrammatic approach**: model-independent analysis based on flavor SU(3) symmetry topological amplitudes allowing to understand the relative importance of different underlying decay mechanisms.

- **Three-body decays** analyzed in a phenomenological quasi-two-body factorization approach in which two-body hadronic final state interactions are fully taken into account in terms of unitary form factors.
Some recent works on hadronic D decays

 → Explore consequences of constraint from CPT symmetry on three-body D decays.
 → Simulate $D^\pm \rightarrow \pi^\mp K^+ K^-$ and discuss correlations with measured $D^\pm \rightarrow \pi^\mp \pi^+ \pi^-$.

 → Based on the k_T factorization, results agree with the existing experiment data for most channels.
Some recent works on hadronic D decays

 → Explore consequences of constraint from CPT symmetry on three-body D decays.
 → Simulate $D^\pm \rightarrow \pi^\mp K^+ K^-$ and discuss correlations with measured $D^\pm \rightarrow \pi^\mp \pi^+ \pi^-$.

 → Based on the k_T factorization, results agree with the existing experiment data for most channels.
Comparison of the $T_{K^+ K^-}$ amplitude with that of the experimental data

→ FSI in [2] $f_0(980)$ production in $D_s \rightarrow \pi^+ \pi^+ \pi^-$ and $D_s \rightarrow \pi^+ K^+ K^-$ decays, J. M. Dias, F. S. Navarra, M. Nielsen, E. Oset, arXiv:1601.04635.

→ $f_0(980)$ in the 1 GeV region
Cabibbo favored and suppressed tree amplitudes in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

$c \rightarrow su\bar{d}$ transition:

$$
\propto \frac{G_F}{\sqrt{2}} a_1(m_c) \Lambda_1 \{ \equiv V_{cs}^* V_{ud} \} (\bar{s}c) V_{-A} (\bar{u}d) V_{-A}
\rightarrow V_{cs} \approx V_{ud} \approx \cos \theta_C \approx 0.975,
$$

θ_C Cabibbo angle

\Rightarrow 7 Cabibbo favored (CF) tree (Tr) amplitudes:

$[K\pi]_{S,P,D} \pi + K [\pi\pi]_{S,P,D} + K \omega \{ \omega \rightarrow [\pi\pi]_P \}$

by G-parity violation

$c \rightarrow du\bar{s}$ transition:

$$
\propto \frac{G_F}{\sqrt{2}} a_1(m_c) \Lambda_2 \{ \equiv V_{cd}^* V_{us} \} (\bar{d}c) V_{-A} (\bar{u}s) V_{-A}
\rightarrow V_{cd} \approx -\lambda, V_{us} \approx \lambda, \lambda = \sin \theta_C,
$$

\Rightarrow 6 doubly Cabibbo suppressed (DCS) tree (Tr) amplitudes as no W coupling to $[K\pi]_D$ state

Amplitude parametrizations
Outlook
Backup slides
Annihilation - t-channel W-exchange amplitudes in $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

$c \rightarrow s \bar{u} \bar{d}$ ($c \bar{u} \rightarrow s \bar{d}$):
\[
\propto \frac{G_F}{\sqrt{2}} a_2(m_c) \cos^2 \theta_C (\bar{s}c)_{V-A} (\bar{d}u)_{V-A}
\]

\Rightarrow 7 Cabibbo favored annihilation (An) amplitudes

$c \rightarrow d \bar{u} \bar{s}$ ($c \bar{u} \rightarrow d \bar{s}$):
\[
\propto -\frac{G_F}{\sqrt{2}} a_2(m_c) \sin^2 \theta_C (\bar{d}c)_{V-A} (\bar{s}u)_{V-A}
\]

$(\sin \theta_C = 0.225)$

\Rightarrow 7 doubly Cabibbo suppressed annihilation (An) amplitudes

Total of 27 non-zero amplitudes: 13 tree and 14 annihilation
Modified annihilation amplitudes

- Dalitz plot density distribution: \[\frac{d^2 Br_{s-}}{ds_- ds_+} = \frac{|M|^2}{32(2\pi)^3 m^3 D^0 \Gamma D^0} \]

- The s_- one-dimensional density: \[\frac{dB_{s-}}{ds_-} = \int \frac{(m_{D^0} - m_\pi)^2}{(m_\pi + m_{K^0})^2} \frac{d^2 Br_{s-}}{ds_- ds_+} ds_+ \]

- Out of the 10 phases, one phase (~770\[ρ(770)\]) is chosen to be real, e.g., \(\phi_4 \), cannot be determined \(\Rightarrow \) modified partial amplitudes \(\tilde{M}_i = e^{-i\phi_4} M_i \)

- Modified annihilation amplitudes \(A'_i: \tilde{\tilde{M}}_i = T_i + A'_i \) \(A'_i = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i \).

\[\Rightarrow \]

- New coefficient for \(A'_4 \):
\[\tilde{\tilde{A}}_0^{K^0[\pi^+\pi^-]} = (e^{-i\phi_4} - 1) \int f_{D^0}^{K^0} A_0^{D^0 R_P[\pi^+\pi^-]} (m_{K^0}) + e^{-i\phi_4} A_0^{K^0 R_P[\pi^+\pi^-]} (m_{D^0}) \]

- Similar for: \(\tilde{F}_0^{K^0[\pi^+\pi^-]} \), \(\tilde{F}_0^{K^0[\pi^+\pi^-]} \), \(\tilde{A}_0^{K^0[\pi^+\pi^-]} \).
Dalitz plot density distribution: \[\frac{d^2 Br}{ds_- ds_+} = \frac{|M|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \]

The \(s_- \) one-dimensional density: \[\frac{d Br}{ds_-} = \int (m_{D_0} - m_{\pi})^2 \frac{d^2 Br}{ds_- ds_+} ds_+ \]

Out of the 10 phases, one phase \((M_4 \pi [\rho(770)^0])\) is chosen to be real, e. g., \(\phi_4 \), cannot be determined ⇒ modified partial amplitudes \(\tilde{M}_i = e^{-i\phi_4} M_i \)

\[\frac{d^2 B_{i}^{\text{tree}}}{ds_- ds_+} = \frac{|T_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \quad \text{and} \quad \frac{d^2 B_{i}^{\text{ann}}}{ds_- ds_+} = \frac{|A_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} = \frac{|e^{i\phi_4} \tilde{M}_i - T_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \]

\[|\tilde{M}_i|^2 + |T_i|^2 - 2|\tilde{M}_i||T_i| \leq |A_i|^2 \leq |\tilde{M}_i|^2 + |T_i|^2 + 2|\tilde{M}_i||T_i| \]

\[Br_{i}^{\text{ann, low}} = Br_i + B_{i \text{tree}} - 2 \int \int ds_- ds_+ |\tilde{M}_i||T_i| \]

Modified annihilation amplitudes \(A'_i \): \(\tilde{M}_i = T_i + A'_i \quad A'_i = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i \)

⇒ New coefficient for \(A'_4 \):

\[\tilde{A}_0^{K^0[\pi^+\pi^-]} = (e^{-i\phi_4} - 1) f_{K^0} f_{D_0} A_{D_0}^{D_0 R_P[\pi^+\pi^-]} (m_{K^0}) + e^{-i\phi_4} A_{0}^{K^0 R_P[\pi^+\pi^-]} (m_{D_0}^2) \]

Similar for: \(\tilde{F}_0^{K^0[\pi^+\pi^-]} \), \(\tilde{F}_0^{K^0[\pi^+\pi^-]} \), \(\tilde{A}_0^{K^0[\pi^+\pi^-]} \).
INTRODUCTION

FSI CONSTRAINTS

DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$

FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$

CONCLUDING REMARKS

Amplitude parametrizations

Outlook

Backup slides

Modified annihilation amplitudes

1. **Dalitz plot density distribution:**
 \[
 \frac{d^2 Br}{ds_- ds_+} = \frac{|M|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0}
 \]

2. **The s_- one-dimensional density:**
 \[
 \frac{d Br}{ds_-} = \int (m_D^0 - m_\pi)^2 \frac{d^2 Br}{ds_- ds_+} ds_+
 \]

Out of the 10 phases, **one phase** $(\mathcal{M}_4 \pi [\rho(770)^0]$ is choosen to be real), e. g., ϕ_4, **cannot be determined** ⇒ modified partial amplitudes $\tilde{M}_i = e^{-i\phi_4} M_i$

3. **Modified annihilation amplitudes** $A_i': \tilde{M}_i = T_i + A_i' \ A_i' = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i$.

⇒ **New coefficient for** A_4':

4. **Similar for:** $\tilde{F}_0^{[\bar{K}^0 \pi -]_S \pi^+}, \ F_0^{[\bar{K}^0 \pi -]_S \pi^+}, \ \tilde{A}_0^{[\bar{K}^0 \pi -]_P \pi^+}, \ \tilde{A}_0^{\bar{K}^0 \omega} \leftrightarrow A'_1, A'_2, A'_3, A'_5$.
INTRODUCTION
FSI CONSTRAINTS
DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$
FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$
CONCLUDING REMARKS

Amplitude parametrizations
Outlook
Backup slides

Modified annihilation amplitudes

- Dalitz plot density distribution:
 \[\frac{d^2 Br}{ds_- ds_+} = \frac{|M|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \]

- The s_- one-dimensional density:
 \[\frac{dB r}{ds_-} = \int (m_{D_0}^2 - m_{\pi}^2)^2 \frac{d^2 Br}{ds_- ds_+} \]

- Out of the 10 phases, one phase ($M_4 \pi [\rho(770)^0]$ is choosen to be real), e. g., ϕ_4, cannot be determined \Rightarrow modified partial amplitudes $\tilde{M}_i = e^{-i\phi_4} M_i$

- $\frac{d^2 B r_{i,\text{tree}}}{ds_- ds_+} = \frac{|T_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0}$ and $\frac{d^2 B r_{i,\text{ann}}}{ds_- ds_+} = \frac{|A_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0}$

\[\Rightarrow |\tilde{M}_i|^2 + |T_i|^2 - 2|\tilde{M}_i||T_i| \leq |A_i|^2 \leq |\tilde{M}_i|^2 + |T_i|^2 + 2|\tilde{M}_i||T_i| \]

- Modified annihilation amplitudes A_i': $\tilde{M}_i = T_i + A_i'$, $A_i' = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i$.

\[\Rightarrow \text{New coefficient for } A_4': \tilde{A}_0^{K^0[\pi^+ \pi^-]} = (e^{-i\phi_4} - 1) f_{K^0} f_{D_0} D_0 R_{\rho[\pi^+ \pi^-]}(m_{K^0}^2) + e^{-i\phi_4} A_0^{K^0[\rho][\pi^+ \pi^-]}(m_{D_0}^2) \]

Similar for: $\tilde{F}_0^{K^0[\rho][\pi^+ \pi^-]}$, $\tilde{F}_0^{K^0[\pi^+ \pi^-]}$, $\tilde{F}_0^{K^0[\pi^+ \pi^-]}$, $\tilde{A}_0^{K^0[\pi^+ \pi^-]}$, $\tilde{A}_0^{K^0[\omega]} \leftrightarrow A_1', A_2', A_3', A_5'$.
Modified annihilation amplitudes

- Dalitz plot density distribution: \[\frac{d^2 Br}{ds_- ds_+} = \frac{|M|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \]

- The s_ one-dimensional density: \[\frac{dB r}{ds_-} = \int (m_{D_0} - m_\pi)^2 \frac{d^2 Br}{ds_- ds_+} ds_+ \]

Out of the 10 phases, one phase \((M_{4\pi} \rho(770)^0)\) is chosen to be real, e. g., \(\phi_4\), cannot be determined \(\Rightarrow\) modified partial amplitudes \(\tilde{M}_i = e^{-i\phi_4} M_i\)

- Partial tree amplitudes: \[\frac{d^2 Br_{i,\text{tree}}}{ds_- ds_+} = \frac{|T_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \]
 and \[\frac{d^2 Br_{i,\text{ann}}}{ds_- ds_+} = \frac{|A_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} = \frac{|e^{i\phi_4}\tilde{M}_i - T_i|^2}{32(2\pi)^3 m^3 D_0 \Gamma D_0} \]

\[\Rightarrow |\tilde{M}_i|^2 + |T_i|^2 - 2|\tilde{M}_i||T_i| \leq |A_i|^2 \leq |\tilde{M}_i|^2 + |T_i|^2 + 2|\tilde{M}_i||T_i| \]

- Modified annihilation amplitudes \(A_i': \tilde{M}_i = T_i + A_i'\)
 \[A_i' = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i. \]

\[\Rightarrow \] New coefficient for \(A_4': \]
\[\tilde{A}^0_{K^0[\pi^+\pi^-]} = (e^{-i\phi_4} - 1)f_{K^0} f_{D_0}^0 R_p[\pi^+\pi^-](m_{K^0}) + e^{-i\phi_4} A^0_{K^0} R_p[\pi^+\pi^-](m_{D_0}^2) \]

Similar for: \(\tilde{f}_0^{K^0\pi^-}_S, \tilde{f}_0^{K^0\pi^-}_P, \tilde{A}^0_{K^0\pi^-}, \tilde{A}^0_{K^0\omega} \leftrightarrow A'_1, A'_2, A'_3, A'_5, \)
Modified annihilation amplitudes

- Dalitz plot density distribution: \(\frac{d^2 Br}{ds_- ds_+} = \frac{|M|^2}{32(2\pi)^3 m_D^0 \Gamma_D^0} \)

- The \(s_- \) one-dimensional density: \(\frac{dBr}{ds_-} = \int (m_D^0 - m_\pi^2) \frac{d^2 Br}{ds_- ds_+} ds_+ \)

Out of the 10 phases, one phase \((M_{4\pi} [\rho(770)^0] \) is choosen to be real), e. g., \(\phi_4 \), cannot be determined \(\Rightarrow \) modified partial amplitudes \(\tilde{M}_i = e^{-i\phi_4} M_i \)

- \(\frac{d^2 B_{i\text{tree}}}{ds_- ds_+} = \frac{|T_i|^2}{32(2\pi)^3 m_D^0 \Gamma_D^0} \)
- \(\frac{d^2 B_{i\text{ann}}}{ds_- ds_+} = \frac{|A_i|^2}{32(2\pi)^3 m_D^0 \Gamma_D^0} = \frac{|e^{i\phi_4} \tilde{M}_i - T_i|^2}{32(2\pi)^3 m_D^0 \Gamma_D^0} \)

\(\Rightarrow \) \(|\tilde{M}_i|^2 + |T_i|^2 - 2|\tilde{M}_i||T_i| \leq |A_i|^2 \leq |\tilde{M}_i|^2 + |T_i|^2 + 2|\tilde{M}_i||T_i| \)

- Modified annihilation amplitudes \(A'_i: \tilde{M}_i = T_i + A'_i \quad A'_i = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i \)

- New coefficient for \(A'_4 \):
 \[\tilde{A}_0^{K^0[\pi^+\pi^-]}_{\rho} = (e^{-i\phi_4} - 1) \tilde{f}_D^{K^0} A_0^{D^0 R_{\rho}[\pi^+\pi^-]} (m_{K^0}^2) + e^{-i\phi_4} A_0^{K^0 R_{\rho}[\pi^+\pi^-]} (m_{D^0}^2) \]

Similar for: \(\tilde{F}_0^{K^0[\pi^+\pi^-]}_{\omega}, \tilde{F}_0^{K^0[\pi^+\pi^-]}_{\rho}, \tilde{A}_0^{K^0[\pi^+\pi^-]}_{\rho}, \tilde{A}_0^{K^0[\pi^+\pi^-]}_{\omega} \leftrightarrow A'_1, A'_2, A'_3, A'_5 \)
Modified annihilation amplitudes

- Dalitz plot density distribution: \[\frac{d^2 Br}{ds_- ds_+} = \frac{|M_i|^2}{32(2\pi)^3 m_0^3 \Gamma_0 \Gamma_0} \]

- The \(s_- \) one-dimensional density: \[\frac{d Br}{ds_-} = \int (m_0 - m_\pi)^2 \frac{d^2 Br}{ds_- ds_+} ds_+ \]

- Out of the 10 phases, one phase \(\phi_4 \) cannot be determined \(\Rightarrow \) modified partial amplitudes \(\tilde{M}_i = e^{-i\phi_4} M_i \)

- \[\frac{d^2 B_{i,\text{tree}}}{ds_- ds_+} = \frac{|T_i|^2}{32(2\pi)^3 m_0^3 \Gamma_0 \Gamma_0} \quad \text{and} \quad \frac{d^2 B_{i,\text{ann}}}{ds_- ds_+} = \frac{|A_i|^2}{32(2\pi)^3 m_0^3 \Gamma_0 \Gamma_0} = \frac{|e^{i\phi_4} \tilde{M}_i - T_i|^2}{32(2\pi)^3 m_0^3 \Gamma_0 \Gamma_0} \]

- \(|\tilde{M}_i|^2 + |T_i|^2 - 2|\tilde{M}_i||T_i| \leq |A_i|^2 \leq |\tilde{M}_i|^2 + |T_i|^2 + 2|\tilde{M}_i||T_i| \)

- \(Br_{i,\text{ann, low}} = Br_i + B_{i,\text{tree}} - 2 \int \int ds_- ds_+ |\tilde{M}_i||T_i| \)

- Modified annihilation amplitudes \(A'_i: \tilde{M}_i = T_i + A'_i \), \(A'_i = T_i(e^{-i\phi_4} - 1) + e^{-i\phi_4} A_i \).

- New coefficient for \(A'_4 \):

\[\tilde{A}_0^0[\pi^+\pi^-]_P = (e^{-i\phi_4} - 1) \frac{f_{K0}}{f_{D0}} A_0^{D0} R_P[\pi^+\pi^-] (m_{K0}^2) + e^{-i\phi_4} A_0^{K0} R_P[\pi^+\pi^-] (m_{D0}^2) \]

Similar for: \(\tilde{F}_0^0[\pi^+\pi^-]_P, \tilde{F}_0^{K0}[\pi^+\pi^-]_P, \tilde{A}_0^{K0} \omega \leftrightarrow A'_1, A'_2, A'_3, A'_5, \)
$K_S^0\pi^-$ effective mass squared distributions ($m_2^2 \equiv s_-$)

$K^*(892)^-$ \uparrow

⇒ Our model (solid curve) compared with Belle data (points with error bars).
Enlarged $K_S^0\pi^-$ effective mass squared distributions

⇒ Our model (solid curve) compared with Belle data (points with error bars). Vertical scale enlarged by a factor of 5 to enforce the differences at higher $K_S^0\pi^-$ masses
Amplitude parametrizations

Outlook

Backup slides

INTRODUCTION

FSI CONSTRAINTS

DIAGRAMMATIC APPROACH: $D \rightarrow M_1 M_2$

FACTORIZATION APPROACH: $D \rightarrow m_1 m_2 m_3$

CONCLUDING REMARKS

$K_S^0\pi^+$ and $\pi^+\pi^-$ effective mass squared distributions ($m_+^2 \equiv s_+$ and $m_0^2 \equiv s_0$)

- **Left panel:** comparison of the $K_S^0\pi^+$ effective mass squared distributions for the **best fit** (solid curve) with the **Belle data** (points with error bars). **Right panel:** as in left panel but for the $\pi^+\pi^-$ effective mass squared.

- **The small shoulder** at $m_0^2 = 1.2 \text{ GeV}^2$ could correspond to the $\pi\pi \rightarrow \eta\eta$ contribution introduced in Belle’analysis but not included in our approach.