Quantum Coherence and Charm

Roy A. Briere *

Carnegie Mellon

CHARM 2016 Bologna 06 Sep 2016

> *Full disclosure: member of CLEO-c / BESIII / Belle II

Quantum coherence analyses allow us to form a more solid foundation for our studies in flavor physics...

They gives us unique access to strong phases, and it's fun to work with EPR-entangled states in an HEP context !

→ It takes TWO amplitudes to have a relative phase...

Briere / CHARM 2016

2

Of course, our goal is to find some flaw in the structure of the Standard Model...

We always seem to have a few *hints* of failure; the Standard Model bends yet does not break ! (thus far...)

→ Phases are angles...

Outline

Introduction: Essentials Overview of Older Results Survey of Recent Results Selected Issues Going Forward

Conclusion

Model Independence

For a written overview, see my CKM2014 proceedings : arXiV:1411.7327

The Big Picture: Phase Inputs

Places where relative D⁰, D^{0bar} phases can show up:

- 1) Quantum-correlated ("EPR") D pairs @ threshold: ψ (3770)
- 2) $D^0 D^{0bar}$ mixing

 3) B → DX, with common D⁰, D^{0bar} final states [re: CKM γ]
 Generally, 1) is viewed as a source of information to be input for use by 2) & 3) [more on this later...]

The relevant datasets are CLEO-c and BESIII : \rightarrow Access to relative D⁰, D^{0bar} strong phase differences \rightarrow Can obtain model-independent results For 2) Rotate measured K π mode x',y' parameters to get x, y For 3) Reduce model-dep. of CKM γ from B \rightarrow D^(*)K^(*), D^(*) π

Main Customer: CKM γ Extraction

CKM Angle γ Measurement

Borrowed from C. Wallace (LHC-b), talk @ Pheno 2014

Using The ψ (3770)

Threshold production of charm with $e^+e^- \rightarrow \psi$ (3770) The ψ (3770) decays to *coherent* pair of D mesons

$$\psi(3770) \rightarrow \frac{1}{\sqrt{2}} \left[D^{0}(+z)\overline{D}^{0}(-z) - \overline{D}^{0}(+z)D^{0}(-z) \right]$$

$$\psi(3770) \rightarrow \frac{1}{\sqrt{2}} \left[D_{CP-}(+z)D_{CP+}(-z) - D_{CP+}(+z)D_{CP-}(-z) \right]$$

CP eigen-states:
$$D_{CP\pm} = [D^{0}\pm\overline{D}^{0}]/\sqrt{2}$$

Measure various combination of rates for:

one decay mode only→"single tags"two decay modes→"double tags"

Easiest way to see access to relative phases:

- → Reconstruct one meson in a CP eigenstate: a "CP tag"
- → Projects 2^{nd} meson into a D⁰, D^{0bar} superposition (Eq 2)
- \rightarrow So, D⁰, D^{0bar} amplitudes to common final state interfere

Also can change the sign of interference! Use CP+ or CP- tag Sep 2016 Briere / CHARM 2016 7

Decay Mode Jargon

Flavored

Flavored semileptonic $K^-e^+\nu$, $K^-\mu^+\nu$ Flavored hadronic $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$

Self-Conjugate

2-body CP eigenstate 2-body CP eigenstate Multi body Multi body

Neither

K⁻K⁺, π⁺π⁻, ... K_Sπ⁰, ... K⁺K⁻π⁺π⁻, π⁺π⁻π⁰ K_Sh⁺h⁻, K_Lh⁺h⁻ K_SK⁻π⁺ Pure CF CF + DCSD

SCS CF + DCSD SCS CF + DCSD SCS

[Note: "Both" is not possible !]

Blue modes: used for γ Green : future? Black: tag only

(? out-of-date now?)

Shorthand: hadron "h" = K, π

CF: **Cabibbo-Favored** right-sign Kaon: $D \rightarrow K^{bar}X + c.c.$

SCS: Singly-Cabibbo-Suppressed

DCSD : Double-Cabibbo-Suppressed (Decay) wrong-sign Kaon: $D \rightarrow K X + c.c.$

Multi-Body "Coherence Factors"

Simplified Two body:

 $|A_1 + A_2|^2 = |A_1^2 + A_2^2 + 2A_1A_2e^{-i\delta}|$ 1, 2 = CF, DCSD

Generalization → Atwood-Soni :

Integrate over Dalitz plot; define real average amplitudes $[\mathcal{A} \rightarrow A \text{ below }]$ BUT this requires a "fudge factor" of Re^{-ið} for interference term

Simplified Multi body:

 $\int d \text{ Dalitz } |\mathcal{A}_1 + \mathcal{A}_2|^2 = |A_1|^2 + A_2|^2 + 2 \text{ R e}^{-i\delta} A_1 A_2|$ Define: R e^{-i\delta} = (true cross-term)/(naïve = A_1 A_2) Note: R < 1 due to two reasons: varying phase & "|r(x)| ≠ 1"

$$\mathbf{r} = \mathbf{A}_{2} / \mathbf{A}_{1} \qquad A_{K^{\pm} \pi^{\mp} \pi^{0}}^{2} = \int |\mathcal{A}_{K^{\pm} \pi^{\mp} \pi^{0}}(\mathbf{x})|^{2} d\mathbf{x}$$

$$R_{K \pi \pi^{0}} e^{-i\delta_{D}^{K \pi \pi^{0}}} = \frac{\int \mathcal{A}_{K^{-} \pi^{+} \pi^{0}}(\mathbf{x}) \mathcal{A}_{K^{+} \pi^{-} \pi^{0}}(\mathbf{x}) d\mathbf{x}}{A_{K^{-} \pi^{+} \pi^{0}} A_{K^{+} \pi^{-} \pi^{0}}}$$
Briere / CHARM 2016

Sep 2016

From Tags to Physics

CP+ & CP- tags:

Switch of +- flips sign of interference term Also used directly for γ , but *phases are trivial* [GLW]

Semileptonic flavor tags:

No interference; clean normalization [but pesky v...]

Hadronic flavor tags:

Normalization, modulo DCSD [easier than semilep for exp.] Also modes we want to study for γ [ADS]

Multi-body self-conjugate

Modes we want to under study for γ [GGSZ]

Different analyses use different numbers of tag modes CLEO K⁻ π^+ & CLEO-c, BESIII K_S $\pi^+\pi^-$ use *many* tags BESIII K⁻ π^+ analysis uses only signal and CP tags

Experimental Output

Κ ⁻ Κ ⁺ , π ⁺ π ⁻	GLW	δ=0, π	
$K^{-}\pi^{+}$	ADS	δ (R=1)	get from
$K^{\mbox{-}}\pi^{\mbox{+}}\pi^{\mbox{-}}$, $K^{\mbox{-}}\pi^{\mbox{+}}\pi^{\mbox{-}}$, $K_{S}K^{\mbox{-}}\pi^{\mbox{+}}$	ADS+	R , δ	threshold
$K_S \pi^+ \pi^-$, $K_S K^+ K^-$	GGSZ	c _i , s _i	charm

 R, δ are Atwood-Soni coherence factors for ADS modes

- → No relative D⁰-D^{0bar} phase in separate D⁰, D^{0bar} Dalitz fits e.g., if one fits N amplitudes to D⁰, D^{0bar} separately: [D*-tagged @ B factory] only gets 2(N-1) = 2N-2 out of 2N-1 relative phases
- → Also avoid Dalitz models

 c_i , s_i are "Cartesian R, δ in Dalitz bins" for GGSZ modes

 \rightarrow Here, relative D⁰-D^{0bar} phase is trivial

(distinction due to self-conjugate modes, not changing basis to c_i , s_i !)

→ But we still *avoid Dalitz models*

QC for Pedestrians I - SKIP -

Simplest effect: $\psi(3770) \rightarrow \left[D_{CP_+} D_{CP_-} - D_{CP_-} D_{CP_+} \right] / \sqrt{2}$ *Like CP* (++, --): cancels *Unlike CP* (+-, -+): doubled My favorite general form: * Ignore mixing for now * $\Gamma_{\rm FC} / A_{\rm F}^2 A_{\rm C}^2 = [r_{\rm F}^2 + r_{\rm C}^2 + 2 r_{\rm F} r_{\rm C} R_{\rm F} R_{\rm C} \cos(\delta_{\rm C} - \delta_{\rm F})]$ or $1 + r_F^2 r_G^2 + ...$: factor out A_i such that r < 1 \rightarrow r_{E,G} (averaged) amplitude ratios : ~ A(D^{0bar} \rightarrow F,G) / A(D⁰ \rightarrow F,G) 1 for CP eigenstates $\sim \tan^2(\theta_C)$ for hadronic K⁻ modes [DCSD/CF] for semileptonic \rightarrow no interference () \rightarrow R, δ : Atwood-Soni coherence factors R=1; $\delta = 0, \pi$ for CP eigenstates; R=1; δ = ? for K⁻ π ⁺ **Both non-trivial** for multi-body hadronic

QC for Pedestrians II - SKIP -

Need some double-tag rate with two "non-trivial" modes to fully separate parameters

→ If not, get only $Re[R e^{-i\delta}] = R \cos \delta$, not separate (R, δ) [Or, only c_i , not both c_i , s_i]

The reason that having two works is simple trigonometry: $\cos(\delta_2 - \delta_1) = \cos\delta_1 \cos\delta_2 - \sin\delta_1 \sin\delta_2$ With this, one has enough observables to separate (can still use modes where one $\delta_i = 0$)

Two "non-trivial" modes ?

- → Can be different values of n in K⁻($n\pi$)⁺ analyses
- → Can even be different bins (i) in $K_S \pi^+ \pi^- c_i$, s_i analyses

CLEO-c Results

CLEO-c Data : 0.8 fb⁻¹ @ $\Psi(3770)$ & 0.6 fb⁻¹ @ 4170 MeV 2003 - 08

$K^{-}\pi^{+}$	281 pb⁻¹ (updated below)	PRL 100, 221801 (2008); PRD, 78, 012001 (2008) [= more details]
$K^-π^+π^0$, $K^-π^+π^+π^-$	818 pb ⁻¹	PRD 80, 031105(R) (2009)
$K_S \pi^+ \pi^-$	818 pb ⁻¹	PRD 80, 032002 (2009) CESR CLEO
K _{S,L} h+h⁻	818 pb ⁻¹	PRD 82, 112006 (2010)
$K_S K^+ \pi^-$	818 pb ⁻¹ *	PRD 85, 092016 (2012)
$K^{-}\pi^{+}$	→ 818 pb ⁻¹	PRD 86, 112001 (2012)
$K^+K^-\pi^+\pi^-$	818 pb ⁻¹ **	PRD 85, 122002 (2012) but <i>first</i> D, D ^{bar}
also use high-E cor	ntinuum - {*	+ 15 fb ⁻¹ ~10 GeV + 24 fb ⁻¹ ~10 GeV & 600 pb ⁻¹ 4.17 GeV
0.001	р'	

Today's Main Topics BESIII Results

Dataset:2.92 fb⁻¹2010 - 11 (1 $\frac{2}{3}$ years) \rightarrow 3.5x CLEO-cFuture ability:~ 4 fb⁻¹ / running year[note: $\mathcal{L}_{2011} >> \mathcal{L}_{2010}$]

 K⁻π⁺
 2.92 fb⁻¹
 PLB 734, 227 (2014)

 K_Sπ⁺π⁻
 2.92 fb⁻¹
 Preliminary @ APS, Apr 2014

 [Will use first as an example; second analysis is in backup slides...]⁻

<u>CLEO-c "Legacy" Results</u>

${\rm K}^-\pi^+\pi^0$, ${\rm K}^-\pi^+\pi^+\pi^-$	818 pb ⁻¹	PLB 731, 1	97 (2014)
$\pi^+\pi^-\pi^0$, $\mathrm{K}^+\mathrm{K}^-\pi^0$	818 pb ⁻¹	PLB 740,	1 (2015)
π+π+π-π-, π+π-π ⁰ , Κ+Κ-π ⁰	818 pb ⁻¹	PLB 747,	9 (2015)

[CLEO-c data analyzed by past members, after collaboration disbanded]Also: 2016 joint analysis of CLEO-c Legacy = LHC-b for $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$ Sep 2016Briere / CHARM 2016

BES Strong Phase $\delta_{K\pi}$

BESIII 2.9 fb⁻¹ PLB 734, 227 (2014)

Simplified Picture: (simple = no mixing)

Amplitude triangle: $CP_{\pm} = CF \pm DCSD$ [DCSD enhanced for visibility !]

Complex ratio DCSD/CF amplitude

$$\frac{\langle K^-\pi^+ | \overline{D}{}^0 \rangle}{\langle K^-\pi^+ | D^0 \rangle} = -re^{-i\delta_{K\pi}}$$

Flip CP of tag: reverses interference term CP-tagged rate asymmetry (essentially) measures $r \cos \delta$ $\mathcal{A}_{CP} = [|\mathbf{A}_{CP}|^2 - |\mathbf{A}_{CP+}|^2] / [|\mathbf{A}_{CP}|^2 + |\mathbf{A}_{CP+}|^2] \leftarrow \text{measure}$ $= |\mathbf{A}_{CP}|^2 - |\mathbf{A}_{CP+}|^2 + |\mathbf{A}_{CP+}|^2$

= $r \cos \delta$ (+ D mixing corrections: y, R_{WS})

First BESIII Quantum Coherence result : straightforward analysis

BESI Strong Phase $\delta_{K\pi}$

BESIII 2.9 fb⁻¹ PLB 734, 227 (2014)

$$\mathcal{A}_{K\pi}^{CP} \equiv \frac{\mathcal{B}_{D^{S-} \to K^{-}\pi^{+}} - \mathcal{B}_{D^{S+} \to K^{-}\pi^{+}}}{\mathcal{B}_{D^{S-} \to K^{-}\pi^{+}} + \mathcal{B}_{D^{S+} \to K^{-}\pi^{+}}}$$

S+(S-) denotes the CP-even (CP-odd) eigenstate.

Direct result : *

 $A_{\rm CP}$ = (12.7 ± 1.3 ± 0.7)%

$$2r\cos\delta_{K\pi} + y = (1 + R_{WS}) \cdot \mathcal{A}_{K\pi}^{CP}$$

Using external inputs for $r_{K\pi}$, R_{WS} , y, we extract : $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

 $\begin{array}{l} \text{Compare to CLEO-c:} \\ \cos \delta_{K\pi} = \ 0.81 \ ^{+0.22} \ _{-0.18} \ ^{+0.07} \ _{-0.06} & (\text{ no external inputs }) \\ \cos \delta_{K\pi} = \ 1.15 \ ^{+0.19} \ _{-0.17} \ ^{+0.00} \ _{-0.08} & (\ w/ \ external \ inputs) \end{array}$

* HFAG can use this, I believe: they now omit final $\delta_{K\pi}$ due to external inputs ...

Original CLEO-c Coherence Factors

Small R for $K\pi\pi\pi$: still useful for r_B !

Sep 2016

K⁻ ($n\pi$)⁺ Update

PLB 731, 197 (2014) 818 pb⁻¹

CLEO-c "Legacy data" publication → not a collaboration result (but I personally believe it to be of equal quality)

→ Now includes $K_S \pi^+ \pi^-$ tags → Updated external inputs (BF, mixing, $K\pi$)

> Кллл updated again in PLB 757, 520 (2016) Now including LHCb data...

Sep 2016

K⁻ ($n\pi$)⁺ Update II

PLB 757, 520 (2016) 818 pb⁻¹ + LHCb data

Combined fit to: CLEO-c "Legacy data" + LHC-b data for D mixing

are almost gone...

$\pi^+\pi^-\pi^0$ & K⁺K⁻ π^0 CP Fractions

PLB 740, 1 (2015) 818 pb⁻¹

More CLEO-c "Legacy data" results

CP fraction for a mixed-CP final state: $F_{+} = N(CP_{+}) / [N(CP_{+}) + N(CP_{-})]$

These states act similar to CP eigenstates, but suffer from a statistical "Dilution factor" of $w = (2F^+ - 1)$

If the CP-content is nearly pure (${\rm F_+}$ is near 1 or 0), then the loss is small

Results:

 $\pi^{+}\pi^{-}\pi^{0}: F_{+} = 0.968 \pm 0.017 \pm 0.006$ $K^{+}K^{-}\pi^{0}: F_{+} = 0.731 \pm 0.058 \pm 0.021$

The three-pion mode is nearly pure: acts *almost* like a CP-eigenstate

$\pi^+\pi^-\pi^+\pi^-$ CP Fraction & More

PLB 747, 9 (2015) 818 pb⁻¹

These CLEO-c "Legacy data" results also imake use of more comlpex non-CP-eigenstate $K_S \pi^+ \pi^- \& K_L \pi^+ \pi^-$ tags

Results: $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$: $F_{+} = 0.737 \pm 0.028$

The new tags can be used to update the previous modes New $\pi^+\pi^-\pi^0$: $F_+ = 1.014 \pm 0.045 \pm 0.022$ Combined: $F_+ = 0.973 \pm 0.017$

New K⁺ K⁻ π^0 : F₊ = 0.734 ± 0.106 ± 0.054 Combined : F₊ = 0.732 ± 0.055

$K_S X vs. K_L X Rate Asymmetries$

Another somewhat related topic, also involving phases

Study rate asymmetries for specific mode pairs of the form : $K_S n\pi \& K_L n\pi$

The K_S & K_L wave-functions lead to net amplitudes that are sums and differences of the CF and DCSD amplitudes
 → up to 10% effects, depending on a relative phase

Some results from CLEO-c ; many more in progress @ BESIII

Selected Issues I

Places to make progress on existing ideas:

→ Use data to un-rotate mixing results for multi-body modes ! e.g., $K\pi\pi^0$: "Atwood-Soni for mixing" [Bondar et al. 2010]

→ Explore suggestion to use Charm mixing as a *SOURCE* of strong phase information [Harnew & Rademacker 2014, 2015]

And, of course: Maintain a lively D ← → B interchange & forge ahead !

Selected Issues II

Places to Be Careful...

- → Efficiencies vary across D Dalitz plots Charm and B factories differ; we traffic in corrected variables Current methods accurate ? Need Dalitz models to do well ? So, take care if using A-S coherence factors or CP fractions !
- → Are studies of D mixing, D CPV, K_S CPV effects complete ? [Probably; see excellent review by Matteo Rama, CKM14, Vienna]
- → Assumptions of SM re: CPV could be more explicit
 e.g., GGSZ assumes no *weak phase* between CF & DCSD (?)
- → Take care with Kaon regeneration and Kaon interactions !

Everything is a Special Case ! (almost)

So if you were confused, you're probably not alone...

$K^{-}\pi^{+}$	$K^{-}\pi^{+}\pi^{0}$	$K^{-}\pi^{+}\pi^{+}\pi^{-}$	K _S K	Κ +π
K ⁺ K ⁻	$\pi^+\pi^-$	$K^+K^-\pi^+\pi^-$	$K_S \pi^+ \pi^-$	π⁺π⁻π⁰

K⁻π⁺ only δ ; K⁻π⁺π⁰, K⁻π⁺π⁺π⁻ have both R & δ

Multi-body Self-conjugate modes: If no CPV, only 2(n-1) isobar phases, not 2n-1 Need threshold data only to avoid model dependence; there is no "essential" D⁰-D^{0bar} phase

4-body: more complicated angular momenta than 3-body

K_S modes: CF and DCSD give K⁰, K^{0bar}, not K_S directly

Conclusions

Unique access to strong phases & ability to extract model-independent results with charm at threshold

- Started with many CLEO-c Results, added "legacy" results
- Perhaps a tiny bit more activity with CLEO-c "legacy data" ?
- Now, the 3.5x larger BESIII dataset is producing results *Many modes in progress...stay tuned!*

Interest of B physics users remains high

- LHCb is a *huge* addition to older B-factory data
- But... e⁺e⁻ will return soon with Belle II [beams stored !]
- Important to keep active interaction between B & D

Future prospects are bright

- More precision, new modes, new variables !
- Need to maintain threshold analysis manpower

Selected Theory References: Insights, Old & New

Quantum Correlations

Goldhaber & Rosner, Phys. Rev. D15, 1254 (1977) Xing, Phys. Rev. D55, 196 (1997) Gronau, Grossman & Rosner, Phys.Lett. B508, 37 (2001) Atwood & Petrov, Phys. Rev. D71, 054032 (2005) [2002 eprint: hep-ph/0207165] Asner & Sun, Phys. Rev. D73, 034024 (2006); E: ibid, D77, 019901 (2008)

DCSD mixing background cancels for correlated D pairs

Bigi & Sanda, Phys. Lett. B171, 320 (1986) [see Ref. 5 for other contributors...]

"Attention PDG": $K_S \neq 1/2$ of K^0 or K^{0bar}

Bigi & Yamamoto, Phys. Lett. B349, 363 (1995)

D⁰ Mixing with K_SKπ

Malde & Wilkinson, Phys. Lett. B701, 353 (2011)

D^0 Mixing as the Source of Phase Info for CKM Υ with "DK" modes

Harnew & Rademacker, Phys. Lett. B 728, 296 (2014) Harnew & Rademacker, JHEP 03, 169 (2015)

Selected Theory References: Alphabet Methods

B physics: CKM Y with "DK" modes

Bigi & Sanda, Phys. Lett. B211, 213 (1988)	The Grand Pre-Cursor		
Gronau & London, Phys. Lett. B253, 483 (1991) Gronau & Wyler, Phys. Lett. B265, 172 (1991)	"GLW": SCS CP-eigenstates		
Atwood, Eilam, Gronau & Soni, Phys. Lett. B341, 372 ((1995). "pre-ADS"		
Atwood, Dunetz & Soni, Phys. Rev. Lett. 78, 3257 (1992 Atwood, Dunetz & Soni, Phys. Rev. D63, 036005 (2001 Atwood & Soni, Phys. Rev. D68, 033003 (2003)			
Giri, Grossman, Soffer & Zupan, Phys. Rev. D68, 054018 (2003) "GGSZ": K _S ππ Bondar. Proc. of BINP Special Analysis Meeting on Dalitz Analysis (2002) [first "GGSZ"] Bondar & Poluektov, Eur. Phys. J. C 47, 347 (2006) CF multi-body: larger strong phases? Bondar & Poluektov, Eur. Phys. J. C 55, 51 (2008) optimizing GGSZ			
Grossman, Ligeti & Soffer PRD 67, 071301 (2003)	"GLS": non-eigenstate SCS		
Bondar & Gershon Phys. Rev. D 70, 091503 (2004)	$B \rightarrow D^{*0}K$, with $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \gamma$		

Selected Theory References: Corrections

Early Explorations of D Mixing

Meca & Silva, Amorim, Santos & Silva Phys. Rev. Lett. 81, 1377 (1998) Phys. Rev. D 59 ,056001 (1999)

D mixing and CKM Y from K_Sππ; Model-ind't D mixing from multi-body modes Bondar, Poluektov, & Vorobiev Phys. Rev. D82, 034033 (2010)

D mixing and CKM Y from B -> DK, $D\pi$

Rama

Phys. Rev. D 89, 014021 (2014)

D Direct CPV and CKM Y from B -> DK

Martone & Zupan, Bhattacharya ,Gronau, London & Rosner Wang Phys. Rev. D 87, 034005 (2013) Phys. Rev. D 87, 074002 (2013) Phys. Rev. Lett. 110, 061802 (2013)

CPV in K_S & CKM Y

Grossman & Savastio JHEP 03, 008 (2014)

K_s decay time acceptance and CPV in tau, D

Bigi & SandaPhys. Lett. B 625, 47 (2005)Grossman & NirJHEP 04, 002 (2012)

K_S detector interactions & B, D CPV

Ko, Won, Golob, Pakhlov Phys. Rev. D 84, 111501(R) (2011)

BESII Preliminary $K_{s}\pi^{+}\pi^{-}$ **Results**

Classic "GGSZ mode"; better precision than CLEO-c *Preliminary results presented @ APS meeting, Apr 2014*

 $K_{S}\pi^{+}\pi^{-}$ is the main topic: extract $c_{i'}$, s_{i} $K_{L}\pi^{+}\pi^{-}$ is also used: extract $c'_{i'}$, s'_{I} relate to $c_{i'}$, s_{i} with model corrections.

Aggressive use of tags, including partial reconstruction

All results preliminary; as presented at April 2014 AP meeting

BESII Preliminary $K_{s}\pi^{+}\pi^{-}$ **Results**

We can calculate c_i and s_i from double tags of $D^0 \rightarrow K_S \pi^+ \pi^- vs D^0 \rightarrow (K_{S,L} \pi^+ \pi^- or CP eigenstates)$

However adding in $D^0 \rightarrow K_L \pi^+ \pi^-$ we can calculate c'_i, s'_i and use how they relate to c_i, s_i to further constrain our results in a Global fit.

Slide from Dan Ambrose, APS 2014

BESII Preliminary $K_s \pi^+ \pi^-$ **Results**

Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to γ . A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the "optimal binning" except the expected background is taken into account before optimizing for γ sensitivity.

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

Slide from Dan Ambrose, APS 2014

BESIT Preliminary $K_s \pi^+ \pi^-$ **Results**

Improved errors w.r.t. CLEO-c

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

Slide from Dan Ambrose, APS 2014