CP Violation, Mixing and non-Leptonic Decays at BESIII

Ming-Gang ZHAO (On behalf of the BESIII Collaboration)

Nankai University, Tianjin, China

The 8th International Workshop on Charm Physics, 5 - 9 September 2016, Bologna, Italy

Beijing Electron Positron Collider II (BEPCII)

Linac: The injector, a 202M long electron position linear accelerator that can accelerate the electrons and positrons to 1.3 GeV.

BESIII: Beijing Spectrometer III, the main detector for BEPC II.

The storage ring: A sports track shaped accelerator with a circumference of 237.5M.

BEPCII: a double-ring machine

Beam energy: 1-2.3 GeV Luminosity: 1×10³³ cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 ×10-4 No. of bunches: 93 **Bunch length:** 1.5 cm **Total current: 0.91** A SR mode: 0.25A @ 2.5 GeV

BESIII Detector

Wire tracker (no Si); TOF + dE/dx for PID; CsI Ecal; RPC muon

BESIII Collaboration

Political Map of the World, June 1999

~450 members **59 institutions from 13 countries**

Europe (14)

Germany: Univ. of Bochum. Univ. of Giessen, GSI **Univ. of Johannes Gutenberg** Helmholtz Ins. In Mainz **Russia: JINR Dubna; BINP Novosibirsk** Italy: Univ. of Torino, Univ. of Ferrara, Frascati Netherland: KVI/Univ. of Groningen Sweden: Uppsala Univ.

Korea (1) Seoul Nat. Univ.

Japan (1)

Tokyo Univ.

China(34)

IHEP, CCAST, GUCAS, Shandong Univ., Univ. of Sci. and Tech. of China Zhejiang Univ., Huangshan Coll. Huazhong Normal Univ., Wuhan Univ. Zhengzhou Univ., Henan Normal Univ. Peking Univ., Tsinghua Univ., Zhongshan Univ., Nankai Univ. Shanxi Univ., Siehuan Univ., Univ. of South China Hunan Univ., Liaoning Univ. Nanjing Univ., Nanjing Normal Univ. Guangxi Normal Univ., Guangxi Univ. Suzhou Univ., Hangzhou Normal Univ. Lanzhou Univ., Henan Sci. and Tech. Univ.

- ~3.0 fb⁻¹ @ ψ(4170)
- ~0.5 fb⁻¹ @ ψ(4040)

Charm data sample

~2.9 fb⁻¹ @ ψ(3770)

Analysis technique

 $e^+e^-
ightarrow c \bar{c}
ightarrow ar{D}_{tag} D_{sig}$: Double-tag technique, Absolute measurement

• Tag \overline{D}_{tag} in hadronic decay modes

$$\Delta E = E_{\bar{D}_{\rm tag}} - E_{\rm beam}$$

$$M_{
m BC} = \sqrt{E_{
m beam}^2 - p_{ar{D}_{
m tag}}^2}$$

• Reconstruct D_{sig} using the remaining tracks not associated to \overline{D}_{tag}

•
$$E_{D_{\mathrm{sig}}} = E_{\mathrm{beam}}, \ \vec{p}_{D_{\mathrm{sig}}} = -\vec{p}_{\bar{D}_{\mathrm{tag}}}$$

- no additional tracks/showers
- (semi-)leptonic decay: missing neutrino, $U_{\rm miss}\equiv E_{\rm miss}-|ec{p}_{
 m miss}|\sim 0$
- High tagging efficiency
- Extremely clean
- Systematic uncertainties associated to tag side are mostly canceled out

Topics

- $D^+ \rightarrow K_S / K_L K^+ (\pi^0)$ and CP asymmetry
- $D^0 \rightarrow K_S/K_L \pi^0(\pi^0)$ and mixing parameter y_{CP}
- Analysis of $D^0 \rightarrow K_S \pi^+ \pi^-$
- Branching fraction of $D^0 \rightarrow K_S K^+ K^-$
- Amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
- Measurement of $D^{0,+} \rightarrow PP$
- Cabibbo suppressed decay $D^{0,+} \rightarrow \omega \pi^{0,+}$
- $D_{S}^{+} \rightarrow \eta' X$ and $D_{S}^{+} \rightarrow \eta' \rho$

$D^+ \rightarrow K_S/K_LK^+(\pi^0)$ and CP asymmetry

- In the Standard Model (SM), the singly Cabibbo suppressed (SCS) D meason hadronic decays are predicted to exhibit CP asymmetries at the order of 10⁻³.
- Direct CP violation in SCS decays could arise from the interference between tree-level and penguin decay processes.
- DCS and CF decays are expected to be CP invariant in the SM because they are dominated by a single weak amplitude.
- So, measurements of CP asymmetries in SCS processes greater than O(10⁻³) would be evidence of physics beyond the SM.
- CP asymmetry can be tested by using SCS decays D⁺ →K_S/K_LK⁺(π⁰) based on a charge-dependent measurement.

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(D^+ \to K^0_{S,L} K^+(\pi^0)) - \mathcal{B}(D^- \to K^0_{S,L} K^-(\pi^0))}{\mathcal{B}(D^+ \to K^0_{S,L} K^+(\pi^0)) + \mathcal{B}(D^- \to K^0_{S,L} K^-(\pi^0))}$$

• Absolute branching fraction

$$\mathcal{B}_{\rm sig} = \frac{N_{\rm DT}/\epsilon_{\rm DT}}{N_{\rm ST}/\epsilon_{\rm ST}} = \frac{N_{\rm DT}/\epsilon}{N_{\rm ST}}$$

where $\varepsilon = \varepsilon_{DT} / \varepsilon_{ST}$ is the efficiency of reconstructing the signal decay

$D^+ \rightarrow K_S/K_LK^+(\pi^0)$ and CP asymmetry

[Details can be found in Wenjing Zheng's talk @ Sept.7]

The first and second uncertainties are statistical and systematic errors.

BESIII preliminary

Mode	$\mathcal{B}(D^+)$ (×10 ⁻³)	$\mathcal{B}(D^-)(\times 10^{-3})$	$\overline{\mathcal{B}}(\times 10^{-3})$	\mathcal{A}_{CP} (%)	
$K^0_S K^{\pm}$	$3.01 \pm 0.12 \pm 0.10$	$3.10 \pm 0.12 \pm 0.10$	$3.06 \pm 0.09 \pm 0.10$	$\textbf{-1.5}\pm2.8\pm1.6$	Γ
$K^0_S K^{\pm} \pi^0$	$5.23 \pm 0.28 \pm 0.24$	$5.09 \pm 0.29 \pm 0.22$	$5.16 \pm 0.21 \pm 0.23$	$1.4\pm4.0\pm2.4$	
$K_L^0 K^{\pm}$	$3.13 \pm 0.14 \pm 0.13$	$3.32 \pm 0.15 \pm 0.13$	$3.23 \pm 0.11 \pm 0.13$	$-3.0\pm3.2\pm1.2$	
$K^0_L K^{\pm} \pi^0$	$5.17 \pm 0.30 \pm 0.21$	$5.26 \pm 0.30 \pm 0.20$	$5.22 \pm 0.22 \pm 0.21$	$-0.9\pm4.1\pm1.6$	

$D^0 \rightarrow K_S/K_L \pi^0(\pi^0)$ and mixing parameter y_{CP}

- The decay rates of $D \to K_S \pi$'s and $D \to K_L \pi$'s are not the same because of the interference between Cabibbo Favored component $D \to K^0 \pi$'s and doubly Cabibbo suppressed $D \to K^{0\text{bar}}\pi$'s component^[PLB 349(1995)363]. The sign of this interference of K^0 with $K^{0\text{bar}}$ is opposite for K^0_L and K^0_S , so, $Br(D \to K_S \pi$'s) and $Br(D0 \to K_L \pi$'s) should not in general be equal. The scale of the asymmetry is set by doubly Cabibbo suppression factor $\tan^2 \theta_C \approx 0.05$, where θ_C is the Cabibbo angle.
- Previous CLEO-c result based on 281 pb⁻¹@ψ(3770)

 $R(D^0 \to K_{S,L}\pi^0) = 0.108 \pm 0.025 \pm 0.024$

 $R(D^+ \to K_{S,L}\pi^+) = 0.022 \pm 0.016 \pm 0.018$

• Oscillations between meson and antimeson can occur when the flavor eigenstates differ from the physical mass eigenstates. These effects provide a mechanism whereby interference in the transition amplitudes of mesons and antimesons may occur. The oscillations are conventionally characterized by two dimensionless parameters $x=\Delta m/\Gamma$ and $y = \Delta\Gamma/\Gamma$. In the absence of CP violation, one has $y_{CP} = y$.

$D^0 \rightarrow K_S/K_L \pi^0(\pi^0)$ and mixing parameter y_{CP}

• Branching fractions and asymmetries

$$R(D \to K_{S,L} + \pi's) = \frac{Br(D \to K_S\pi's) - Br(D \to K_L\pi's)}{Br(D \to K_S\pi's) + Br(D \to K_L\pi's)}$$

	$D \to K^0_{S,L} \pi^0$				
	$Br_{K_S\pi^0}(\%)$	$Br_{K_L\pi^0}(\%)$	$R(D \to K_{S,L} \pi^0)$		
$K\pi$	$1.208 {\pm} 0.041$	$1.061{\pm}0.038$	$0.0646 {\pm} 0.0245$		
$K3\pi$	$1.212 {\pm} 0.037$	$0.985 {\pm} 0.036$	0.1035 ± 0.0237		
$K\pi\pi^0$	$1.251{\pm}0.028$	$0.953 {\pm} 0.029$	$0.1351 {\pm} 0.0186$		
All	$1.230{\pm}0.020$	$0.991{\pm}0.019$	$0.1077 {\pm} 0.0125$		

	$D o K^0_{S,L} \pi^0 \pi^0$				
	$Br_{K_{S}2\pi^{0}}(\%)$	$Br_{K_L 2\pi^0}(\%)$	$R(D \to K_{S,L} 2\pi^0)$		
$K\pi$	$1.024{\pm}0.049$	$1.299 {\pm} 0.080$	-0.1183 ± 0.0385		
$K3\pi$	$0.887 {\pm} 0.043$	$1.097{\pm}0.073$	-0.1060 ± 0.0409		
$K\pi\pi^0$	$1.010{\pm}0.036$	$1.158 {\pm} 0.060$	-0.0681 ± 0.0313		
All	$0.975 {\pm} 0.024$	$1.175 {\pm} 0.040$	-0.0929 ± 0.0209		

[Details can be found in Wenjing Zheng's talk @ Sept.7]

$D^0 \rightarrow K_S/K_L \pi^0(\pi^0)$ and mixing parameter y_{CP}

• y_{CP} measurement

y_{CP} is obtained based on CP± + SL analysis: D⁰ →K_Sπ⁰ and D⁰ →K_Lπ⁰ versus D⁰→Kev_e

 $N_{\mathrm{ST}(\mathbf{CP}^{\pm})} = (1 \mp y_{\mathrm{CP}}) \cdot 2N_{D^0\bar{D}^0}\mathcal{B}_{\mathrm{tag}}\epsilon_{\mathrm{ST}}$ $N_{\mathrm{DT}(\mathbf{CP}^{\pm},\mathbf{Ke}\nu_{\mathbf{e}})} = (1 + y_{\mathrm{CP}}^2) \cdot 2N_{D^0\bar{D}^0}\mathcal{B}_{\mathrm{tag}}\mathcal{B}_{\mathrm{sig}}\epsilon_{\mathrm{DT}}$

$$\alpha = \frac{N_{\rm DT(CP^+, Ke\nu_e)}/\epsilon}{N_{\rm ST(CP^+)}}$$
$$\beta = \frac{N_{\rm DT(CP^-, Ke\nu_e)}/\epsilon}{N_{\rm ST(CP^-)}}$$
$$y_{\rm CP} = \frac{\alpha - \beta}{\alpha + \beta}$$

statistical error only

$\alpha (K_L^0 \pi^0, Ke \nu_e)$	β $(K_S^0 \pi^0, Ke \nu_e)$	$y_{ m CP}=rac{lpha-eta}{lpha+eta}$
3.603 ± 0.142	3.533 ± 0.100	$(0.98 \pm 2.43)\%$

[Details can be found in Wenjing Zheng's talk @ Sept.7]

Analysis of $D^0 \rightarrow K_S \pi^+ \pi^-$

Motivated by the quest to increase the precision of the angle γ measurement in B⁻ \rightarrow DK⁻ decay.

Determine γ through the interference between $b \rightarrow c$ and $b \rightarrow u$ transitions when D^0 and $\overline{D^0}$ both decay to the same final state f(D).

BESIII can help reducing the systematics on this important measurement with providing more information on the

 $D^0 \rightarrow K^0 \pi^+ \pi^-$ decay.

With the amount of data LHCb collecting, γ measurement soon will be systematically limited.

We will use the GGSZ* method to investigate the decay Final states are three body, self-conjugate modes eg: K_sKK, K_s $\pi\pi$

- Binning regions of Dalitz plot where δ_{D} is similar
- Model independent, there is no incorrect binning.
- Optimization for binning for increased sensitivity.

*Giri, Grossman, Soffer, Zupan (**GGSZ**) Phys. Rev. D 68 (2003) 054018

Analysis of $D^0 \rightarrow K_S \pi^+ \pi^-$

- T_i : measured in flavor decays
- * r_B : color suppression ~0.1
- δ_B : strong phase of B
- c_{i,s_i} : weighted average of $cos(\Delta \delta_D)$ and $sin(\Delta \delta_D)$, phase difference between Ds given by $\Delta \delta_D$. All but c_{i,s_i} variables will be measured in B factories.

Belle model independent γ measurement

$$\Gamma_{i}^{\pm} \equiv \int_{i} d\Gamma(B^{\pm} \to (K_{S}^{0}\pi^{-}\pi^{+})_{D}K^{\pm})$$

$$= T_{i} + r_{B}^{2}T_{i} \pm 2r_{B}\sqrt{T_{i}T_{i}}[\cos(\delta_{B} + \gamma)c_{i} - \sin(\delta_{B} + \gamma)s_{i}]$$

$$[K_{s}\pi^{+}\pi^{-}vs \text{ CP tags}]$$

$$[K_{s}\pi^{+}\pi^{-}vs \text{ CP tags}]$$

$$[K_{s}\pi^{+}\pi^{-}vs \text{ K}_{s}\pi^{+}\pi^{-}]$$

$$[K_{s}\pi^{+}\pi^{-}vs \text{ K}_{s}\pi^{+}\pi^{-}]$$

$$[K_{s}\pi^{+}\pi^{-}vs \text{ K}_{s}\pi^{+}\pi^{-}]$$

Analysis of $D^0 \rightarrow K_S \pi^+ \pi^-$

Measured using the worlds largest $\Psi(3770)$ data sample taken at the threshold.

Results consistent with the CLEO-c with superior statistical uncertainties.

Contribution to the uncertainty in gamma of $\pm 2.1^{\circ}$ using optimal binning, compared to Belle's current measurement of $\pm 4.3^{\circ}$ from CLEO-c's results.

	С	i	s_i	
Bins	BES-III	CLEO-c	BES-III	CLEO-c
1	0.066 ± 0.066 -0.009 ± 0.088 -		-0.843 ± 0.119	-0.438 ± 0.184
2	0.796 ± 0.061	0.900 ± 0.106	-0.357 ± 0.148	-0.490 ± 0.295
3	0.361 ± 0.125	0.292 ± 0.168	-0.962 ± 0.258	-1.243 ± 0.341
4	-0.985 ± 0.017	-0.890 ± 0.041	-0.090 ± 0.093	-0.119 ± 0.141
5	-0.278 ± 0.056	-0.208 ± 0.085	0.778 ± 0.092	0.853 ± 0.123
6	0.267 ± 0.119	0.258 ± 0.155	0.635 ± 0.293	0.984 ± 0.357
7	0.902 ± 0.017	0.869 ± 0.034	-0.018 ± 0.103	-0.041 ± 0.132
8	0.888 ± 0.036	0.798 ± 0.070	-0.301 ± 0.140	-0.107 ± 0.240

BESIII Preliminary

Branching fraction of $D^0 \rightarrow K_S K^+ K^-$

Preliminary result on the branching fraction measurement via single tag

 $\mathcal{B}(D^0 o K^0_S K^+ K^-) = (4.622 \pm 0.045 \pm 0.181) imes 10^{-3}$

- Relative uncertainty: 4.0%
- Good agreement with PDG2015 value:

$$\mathcal{B}(D^0 \to K^0_S K^+ K^-) = (4.51 \pm 0.34)\%$$

 \hookrightarrow 7.5% relative uncertainty

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

- D⁰→K⁻π⁺π⁺π⁻ is one of the golden decay mode of D⁰, its branching fraction is widely use to normalize other charm analysis, such as BF measurements, strong phase measurements, CKM unitary triangle measurement.
- Poor knowledge of intermediate processes will introduce large systematic uncertainty.
- Some intermediate process such as D⁰→K^{*0bar}p⁰ can be used to check the calculation of LQCD or effective theories.

Previous measurements (fit fractions) have performed by Mark III and E691, respectively:

Decay mode	Mark III	E691
$D^0 \to K^- a_1^+(1260)$	$0.492 \pm 0.024 \pm 0.08$	$0.47 \pm 0.05 \pm 0.10$
$D^0 \to \bar{K}^{*0} \rho^0$	$0.142 \pm 0.016 \pm 0.05$	$0.13 \pm 0.02 \pm 0.02$
$D^0 \to K_1^-(1270)\pi^+$	$0.066 \pm 0.019 \pm 0.03$	
$D^0\to \bar{K}^{*0}\pi^-\pi^+$	$0.140 \pm 0.018 \pm 0.04$	$0.11 \pm 0.02 \pm 0.03$
$D^0 \to K^- \pi^+ \rho^0$	$0.084 \pm 0.022 \pm 0.04$	$0.05 \pm 0.03 \pm 0.02$
$D^0 \to$ 4-body non-resonance	$0.242 \pm 0.025 \pm 0.06$	$0.23 \pm 0.02 \pm 0.03$

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Fit fractions(FF) for different components

	Component	Fit fraction (%)
	$D^0 \rightarrow \bar{K}^{*0} \rho^0$	$12.3 \pm 0.4 \pm 0.5$
	$D^0\to K^-a_1^+(1260)(\rho^0\pi^+)$	$54.6 \pm 2.8 \pm 3.7$
D C	$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	
	$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$3.4 \pm 0.3 \pm 0.2$
	$D^0 \rightarrow K^- \pi^+ \rho^0$	$8.4 \pm 1.1 \pm 2.2$
	$D^0\to \bar{K^{*0}}\pi^+\pi^-$	$7.0\pm0.4\pm0.3$
	$D^0 \to K^-\pi^+\pi^+\pi^-$	$21.9\pm0.6\pm0.6$

With the fit fractions and the BF of $D^0 \rightarrow K3\pi$, we get the BFs of the components

Component	Branching fraction $(\%)$	PDG value (%)
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23
$D^0 \to K^- a_1^+ (1260)(\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$		0.29 ± 0.03
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.02 \pm 0.01$	0.29 ± 0.03
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.18 \pm 0.02$	0.51 ± 0.23
$D^0 \to \bar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.03 \pm 0.02$	0.99 ± 0.23
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26

[Details can be found in Yu Lu's talk @ Sept.7]

Branching fraction of D^{0,+}→PP

- Analysis of D→PP modes can provide information for SU(3) breaking effect study^[PLB 712 (2012) 8186] and CP violation searching.
- Absolute measurement of D⁰→Kπ is very important since it is commonly used as normalization mode in charm study.
- This measurement is completed with single tag technique

Only one D meson is built in the analysis

$$\Delta E = E_{ar{D}_{ ext{tag}}} - E_{ ext{beam}}$$

$$M_{
m BC} = \sqrt{E_{
m beam}^2 - p_{ar{D}_{
m tag}}^2}$$

Branching fraction of D^{0,+}→PP

• **BESIII Preliminary**

Mode	$m{N}_{ m signal}^{ m net}$	arepsilon (%)	${\cal B}{\pm}({\sf stat}){\pm}({\sf sys})$	\mathcal{B}_{PDG}
$\frac{\pi^{+}\pi^{-}}{K^{+}K^{-}}\\ \kappa^{-}\pi^{+}\\ \kappa^{0}_{S}\pi^{0}\\ \kappa^{0}_{S}\eta\\ \kappa^{0}_{S}\eta'$	21105 ± 249 56438 ± 273 537745 ± 767 66539 ± 302 9532 ± 126 3007 ± 61	66.03 ± 0.25 62.82 ± 0.32 64.98 ± 0.09 38.06 ± 0.17 31.96 ± 0.14 12.66 ± 0.08	$\begin{array}{c}(1.505\pm0.018\pm0.031)\times10^{-3}\\(4.229\pm0.020\pm0.087)\times10^{-3}\\(3.896\pm0.006\pm0.073)\%\\(1.236\pm0.006\pm0.032)\%\\(5.149\pm0.068\pm0.134)\times10^{-3}\\(9.562\pm0.197\pm0.379)\times10^{-3}\end{array}$	$\begin{array}{c}(1.421\pm0.025)\times10^{-3}\\(4.01\pm0.07)\times10^{-3}\\(3.93\pm0.04)\%\\(1.20\pm0.04)\%\\(4.85\pm0.30)\times10^{-3}\\(9.5\pm0.5)\times10^{-3}\end{array}$
$\frac{\pi^{0}\pi^{+}}{\pi^{0}K^{+}}$ $\frac{\eta\pi^{+}}{\etaK^{+}}$ $\frac{\eta'\pi^{+}}{\eta'\kappa^{+}}$ $\frac{\eta'\kappa^{+}}{\kappa_{S}^{0}\pi^{+}}$ $\kappa_{S}^{0}K^{+}$	$\begin{array}{c} 10108 \pm 267 \\ 1834 \pm 168 \\ 11636 \pm 215 \\ 439 \pm 72 \\ 3088 \pm 83 \\ 87 \pm 25 \\ 93884 \pm 352 \\ 17704 \pm 151 \end{array}$	$\begin{array}{c} 48.98 \pm 0.34 \\ 51.52 \pm 0.42 \\ 46.96 \pm 0.25 \\ 48.21 \pm 0.31 \\ 21.49 \pm 0.18 \\ 22.39 \pm 0.22 \\ 51.38 \pm 0.18 \\ 48.45 \pm 0.14 \end{array}$	$\begin{array}{c} (1.259\pm0.033\pm0.025)\times10^{-3}\\ (2.171\pm0.198\pm0.060)\times10^{-4}\\ (3.790\pm0.070\pm0.075)\times10^{-3}\\ (1.393\pm0.228\pm0.124)\times10^{-4}\\ (5.122\pm0.140\pm0.210)\times10^{-3}\\ (1.377\pm0.428\pm0.202)\times10^{-4}\\ (1.591\pm0.006\pm0.033)\times10^{-2}\\ (3.183\pm0.028\pm0.065)\times10^{-3} \end{array}$	$\begin{array}{c} (1.24\pm0.06)\times10^{-3}\\ (1.89\pm0.25)\times10^{-4}\\ (3.66\pm0.22)\times10^{-3}\\ (1.12\pm0.18)\times10^{-4}\\ (4.84\pm0.31)\times10^{-3}\\ (1.83\pm0.23)\times10^{-4}\\ (1.53\pm0.06)\times10^{-2}\\ (2.95\pm0.15)\times10^{-3} \end{array}$

[Details can be found in Yu Lu's talk @ Sept.7]

Cabibbo suppressed decay $D^{0,+} \rightarrow \omega \pi^{0,+}$

PRL116, 082001 (2016)

- The first observation of the singly Cabibbo-supressed decay
- Double tag method to suppress backgrounds
- Also measure $D^{0(+)} \rightarrow \eta \pi^{0(+)}$

Branching fraction	This work	Previous measurements
$\mathcal{B}(D^+ ightarrow \omega \pi^+) (10^{-4})$	$2.79 \pm 0.57 \pm 0.16$	< 3.4 at 90% C.L.
$\mathcal{B}(D^0 \to \omega \pi^0)$ (10 ⁻⁴)	$1.17 \pm 0.34 \pm 0.07$	< 2.6 at 90% C.L.
$\mathcal{B}(D^+ \rightarrow \eta \pi^+) (10^{-3})$	$3.07 \pm 0.22 \pm 0.13$	3.53 ± 0.21
$\mathcal{B}(D^0 \rightarrow \eta \pi^0) \ (10^{-3})$	$0.65 \pm 0.09 \pm 0.04$	$\textbf{0.68} \pm \textbf{0.07}$

Improve understanding of U-spin and SU(3) flavor symmetry breaking effects in D decays and benefitting theoretical prediction of CP violation in D decays

$D_{S}^{+} \rightarrow \eta' X \text{ and } D_{S}^{+} \rightarrow \eta' \rho$

• Old CLEO-c data gave $B(D_s^+ \rightarrow \eta' \rho^+) = (12.5 \pm 2.2)\%$

PLB750, 466 (2015)

- exceed the difference between $B(D_s^+ \rightarrow \eta' X)$ and known $B(D_s^+ \rightarrow \eta' + exclusive)$
- Theoretical calculation: $B(D_s^+ \rightarrow \eta' \rho^+) = (3.0 \pm 0.5)\%$
- BESIII results resolve the tension between inclusive and exclusive modes involving η'

0.482 pb⁻¹@4.009GeV

Summary

- A_{CP} measurement in D⁺ \rightarrow K_S/K_LK⁺(π^{0}), the BFs are consistent with PDG.
- y_{CP} measurement in D⁰→K_S/K_Lπ⁰(π⁰), the BFs and its asymmetry are also obtained.
- Strong phase difference between D0 and $D^{0bar} \rightarrow K_{S}\pi^{+}\pi^{-}$ are measured.
- Branching fractions for $D^0 \rightarrow K_S K^+ K^-$, $D \rightarrow PP$ (14 modes), $D \rightarrow \omega/\eta \pi$ and $D_S^+ \rightarrow \eta' X$ and $D_S^+ \rightarrow \eta' \rho$.
- Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

