
CHARM 2016 - THEORY SUMMARY

Svjetlana Fajfer Physics Department, University of Ljubljana and Institute J. Stefan Ljubljana, Slovenia

CHARM 2016, *VIII INTERNATIONAL WORKSHOP ON CHARM PHYSICS SEPTEMBER 5 - 9, 2016 BOLOGNA, ITALY* 5-9 September 2016

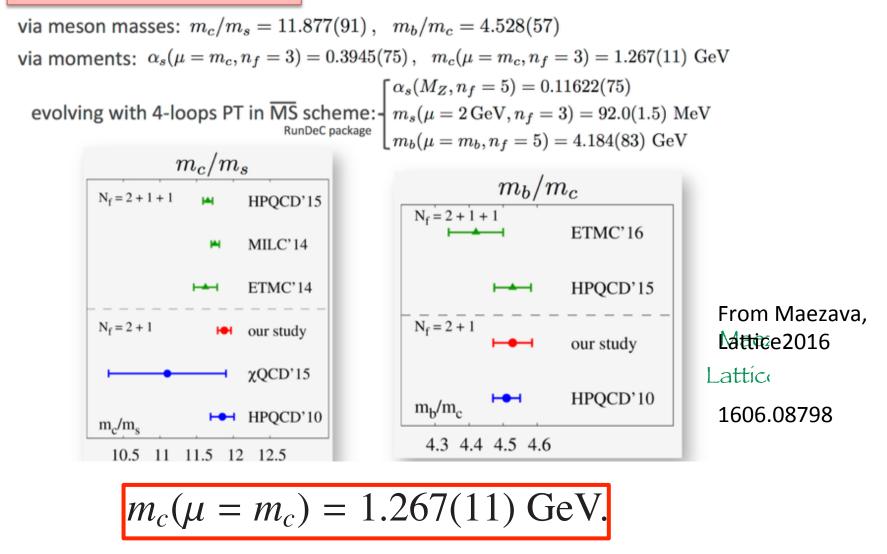
CHARM is always looking at her sister BEAUTY!

What CHARM can do in SM what BEAUTY cannot ?

Introduction

Charm physics goals :

- High precision knowledge of SM parameters: m_c and CKM parameters V_{ci}, i=d,s,b;
- Understanding QCD in charm systems;
- Precision in experimental measurements and theoretical calculations should enable to disentangle SM physics from BSM!


Theory session at CHARM2016

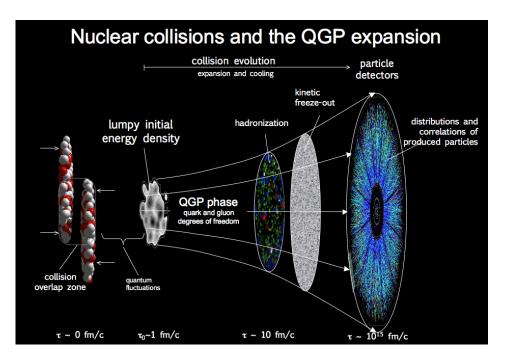
- Heavy lons
- Multi-body hadronic decays and amplitude analysis
- Leptonic, semi-leptonic and rare decays (CKM elements)
- Charm baryon decays
- Charmonium and exotics, production and spectroscopy
- CP violation, mixing and non-leptonic decays
- Open charm production and spectroscopy
- Future prospects

CHARM and QCD

- > Heavy lons
- Charmonium and exotics, production and spectroscopy
- Open charm production and spectroscopy

Charm quark mass (Lenz)

Question for future CHARM conferences: Yukawa coupling, Higgs decay $H
ightarrow car{c}$

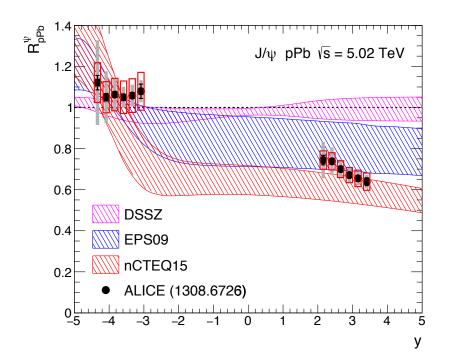

Heavy lons

Talks by Geurts, Arleo, Beraudo, Vairo

Charm Physics with Heavy lons

Geurts

- Studying QGP in nuclear collisions
- What can we learn from heavy quarks in nuclear collisions?
- Experimental toolkit
- Open charm and charmonium


Ultrarelativistic heavy-ion collisions allow the creation of a hot and dense state of matter

use heavy ions to scan through the QCD phase diagram

Arleo:

- J/ψ and Y (and some excited states)
- proton-nucleus (pA) and nucleus-nucleus (AA) collisions

nPDF effects on J/ ψ in pPb at LHC

$${\it R}_{_{pA}}(y,p_{\perp})=rac{1}{A}\;rac{d\sigma^{pA}/dp_{\perp}dy}{d\sigma^{pp}/dp_{\perp}dy}$$

 $R_{pA} = 1$: no (net) nuclear effects $R_{pA} < 1$:suppression $R_{pA} > 1$:enhancement Why quarkonium production in nuclear collisions ?

Many aspects of QCD can be probed in principle

- Nuclear parton densities (nPDF) and saturation at small x
- Parton multiple scattering and induced gluon radiation
- Heavy-quark potential at finite temperature
- Quarkonium (in)elastic interaction with partons and hadrons
- Dynamics of bound state formation

Several frameworks although none of them (yet) fully satisfactory

- Non-Relativistic QCD: many successes but also some failures
 - polarization, η_c hadroproduction, J/ψ photoproduction, LDME poorly known
 - NRQCD factorization not proven to all orders
- Color Singlet Model
 - discrepancy at large p_{\perp} cured by higher-order corrections?
- QCD factorization $(1/p_{\perp} \text{ expansion})$
 - only leading powers p_{\perp}^{-4} and p_{\perp}^{-6} computed so far

Beruado

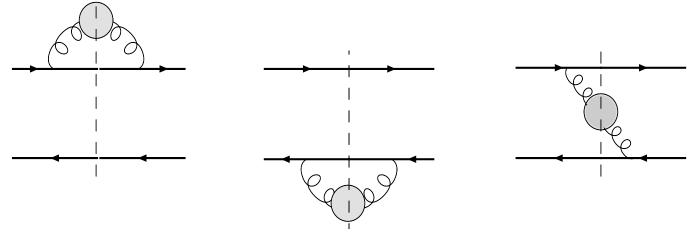
Theory-to-experiment comparison :

c-quarks interact significantly with the medium formed in heavy-ion collision, which affects both their propagation in the plasma and their hadronization.

HF-hadron spectra quenched at high-pT,

at low-pT they display signatures of radial and elliptic flow.

Experimental challenges or theoretical questions

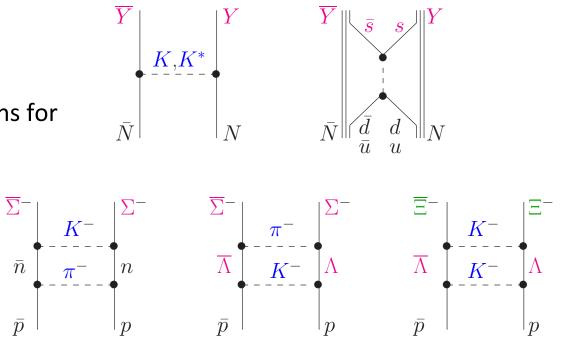

- Charm measurements down to pT → 0: flow/thermalization and total cross-section (of relevance for charmonium supression!)
- D_s and Λ_c measurements: change in hadrochemistry and total cross-section
- Beauty measurements in AA via exclusive hadronic decays: better probe, due to M $\gg \Lambda$ QCD, T (initial production and Langevin dynamics under better control)
- Charm in p-A collisions: which relevance for high-energy atmospheric muons/neutrinos (Auger and IceCube experiments)? Possible initial/final-state nuclear effects?

Quarkonium dissociation and regeneration

Viaro

Gluodissociation is the dissociation of quarkonium by absorption of a gluon from the medium.

Dissociation by inelastic parton scattering is the dissociation of quarkonium by scattering with gluons and light-quarks in the medium.


- effective field theories
- non relativistic bound states at zero temperature,
- study the dissociation of a quarkonium in a thermal bath of gluons and light quarks. In a weakly-coupled framework, the situation is the following:
- For E > m_D quarkonium decays dominantly via gluodissociation (aka singlet-to-octet break up).
- For m_D > E quarkonium decays dominantly via inelastic parton scattering (Landau damping).-

Production of charmed baryons and mesons in antiproton-proton collisions

Haidenbauer

The Jülich group has performed calculations (meson-exchange picture, χEFT) for $p p \rightarrow K K$ $p p \rightarrow \Lambda \Lambda$, $\Sigma\Sigma$, $\Xi \Xi$, ... K N, K N $\Lambda N - \Sigma N$, $\Lambda\Lambda$, ...

assume *SU*(4)*f* symmetry and provide estimates for cross sections for the corresponding reactions involving charmed particles

Predictions for $\overline{p}p \rightarrow \overline{Y_c}Y_c$

- calculation performed in close analogy to the Jülich analysis of $\overline{p}p \rightarrow \overline{Y}Y$ utilizing SU(4) symmetry
- $\bar{\Lambda}_c^- \Lambda_c^+$ cross sections are in the order of $1 7 \mu b$
- $\bar{\Lambda}_c^- \Lambda_c^+$ cross sections are about 10-100 times smaller than for $\bar{p}p \to \bar{\Lambda}\Lambda$
- $\bar{\Lambda}_c^- \Lambda_c^+$ cross sections are about 1000 times larger than those of most other models

Predictions for $\bar{p}p \rightarrow D\bar{D}, D_s\bar{D}_s$

- calculation performed in close analogy to the Jülich analysis of $\bar{p}p \rightarrow \bar{K}K$ utilizing SU(4) symmetry
- $D\overline{D}$ cross sections are in the order of 30 250 nb
- *DD* cross sections are comparable to those of other models
- $D_s \overline{D}_s$ cross sections are of comparable order of magnitude

Taks by Burns, Fernandez, Gonzalez, Pilloni, Brambilla, Wang

Talks by Rayan, Moir, Cheung, Riggio on lattice spectroscopy

Charmonium: standard and exotic

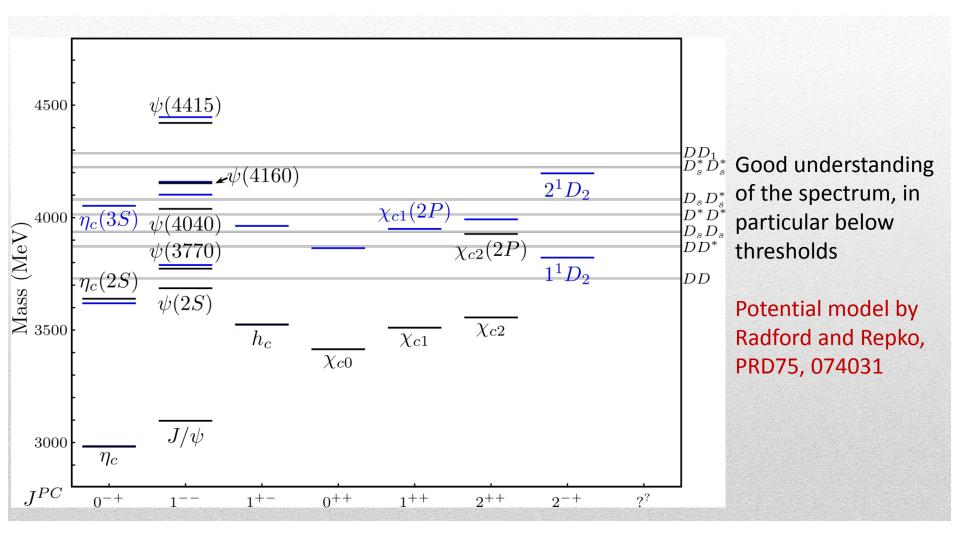
- Exotic models
- Production of exotics at LHC
- Hybridized tetraquarks
- Conclusions

$$V(r) = -\frac{C_F \alpha_s}{r} + \sigma r$$
(Cornell potential)

Standard potential for charmonium:

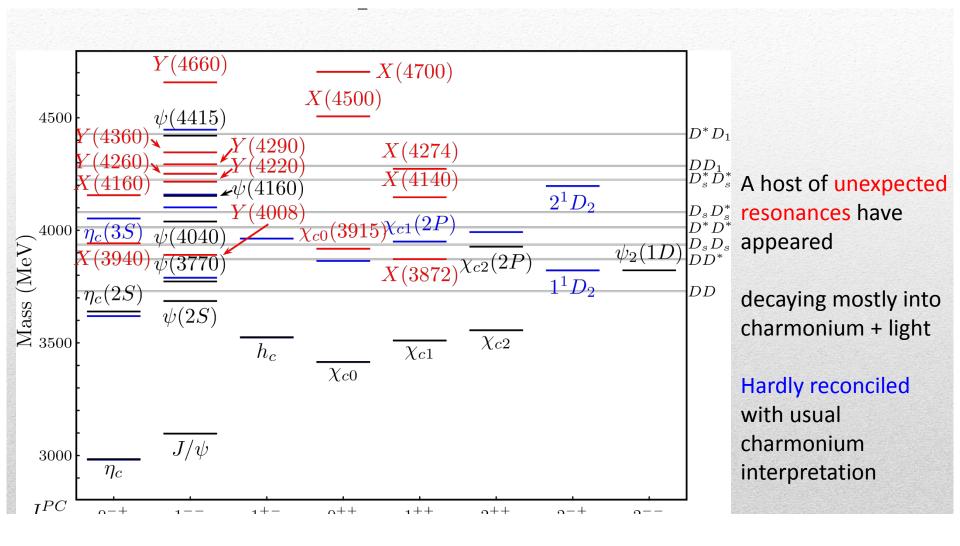
$$\alpha_s(M_Q) \sim 0.3$$

Multiscale system


(perturbative regime) OZI-rule, QCD multipole

$$m_Q \gg m_Q v \gg m_Q v^2$$

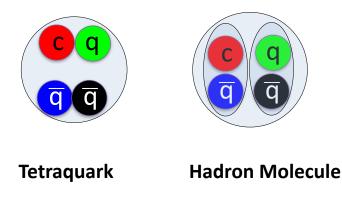
Effective theories (HQET, NRQCD, pNRQCD...) Integrate out heavy DOF Pilloni

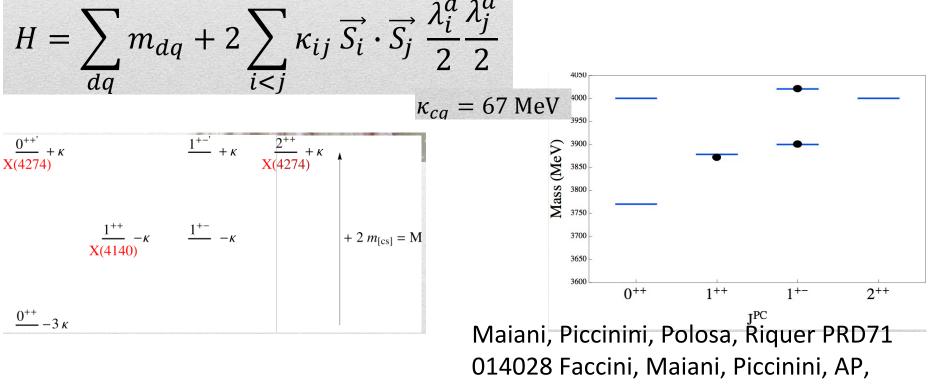

Charmonium landscape

Pilloni

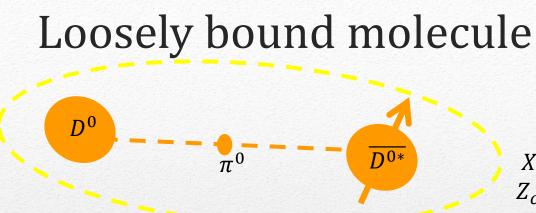
Exotic landscape

Pilloni




Proposed models

Pilloni,Wang

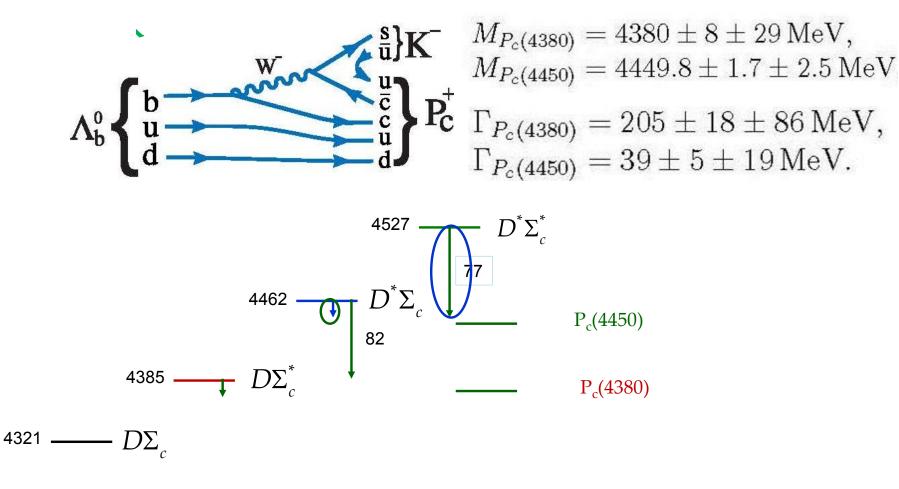

- Molecules or hadrons (loosely bound)
- Diquark- anti-diquark (tetraquark)
- Glueball, Hybryds

(cusp - kinematical effect)

Maiani, Polosa and Riquer, arXiv:1607.02409 Polosa, Riquer PRD87 111102 Maiani, Esposito, AP, Polosa, to appear Piccinini, Polosa, Riquer PRD89 114010

Tornqvist, Z.Phys. C61, 525 Braaten and Kusunoki, PRD69 074005 Swanson, Phys.Rept. 429 243-305 Talk by T. Burns

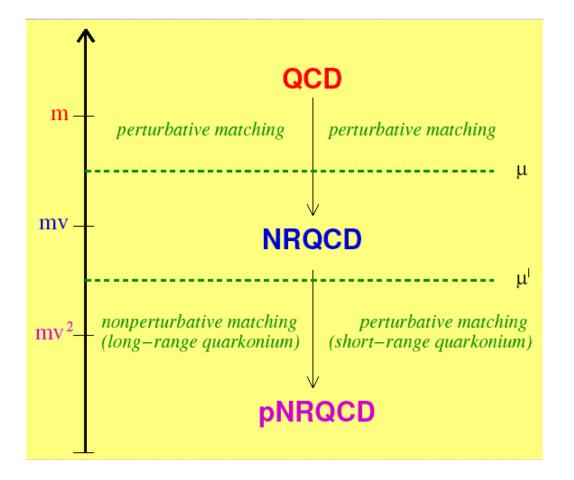
 $\begin{array}{ll} X(3872)\sim \overline{D}{}^0D^{*0} & Z_c'(4020)\sim \overline{D}{}^{*0}D^{**}\\ Z_c(3900)\sim \overline{D}{}^0D^{*+} & Y(4260)\sim \overline{D}D_1 \end{array}$


A deuteron-like meson pair, the interaction is mediated by the exchange of light mesons

- Some model-independent relations (Weinberg's theorem, shallow states theory) ✓
- Good description of decay patterns (mostly to constituents) and X(3872) isospin violation ✓
- States appear close to thresholds ✓ (but Z(4430) ×)
- Lifetime of costituents has to be $\gg 1/m_{\pi}$
- Binding energy varies from −70 to −0.1 MeV, or even positive (repulsive interaction) ×
- Unclear spectrum (a state for each threshold?) depends on potential models ×

$$V_{\pi}(r) = \frac{g_{\pi N}^2}{3} (\vec{\tau_1} \cdot \vec{\tau_2}) \left\{ [3(\vec{\sigma_1} \cdot \hat{r})(\vec{\sigma_2} \cdot \hat{r}) - (\vec{\sigma_1} \cdot \vec{\sigma_2})] \left(1 + \frac{3}{(m_{\pi}r)^2} + \frac{3}{m_{\pi}r} \right) + (\vec{\sigma_1} \cdot \vec{\sigma_2}) \right\} \frac{e^{-m_{\pi}r}}{r}$$

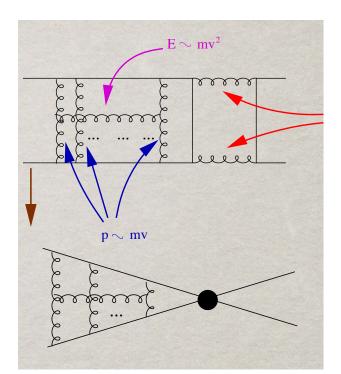
Needs regularization, cutoff dependence

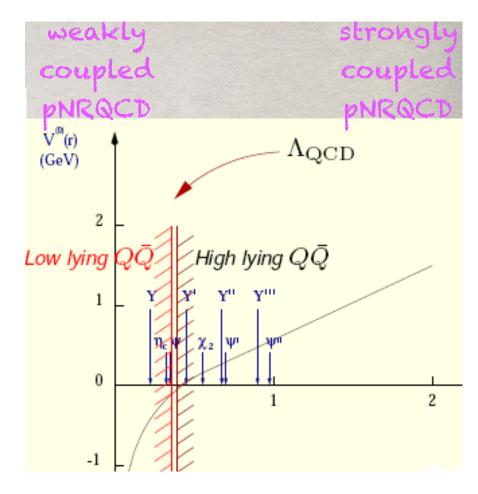

From J/ψ to LHCb pentaquarks

Fernández: The model: constituent quarks, coupled channels ³P₀ model

 $J/\psi\phi$ the X(4140) signal appears as a threshold cusp

QCD theory of quarkonium- multiscale theory

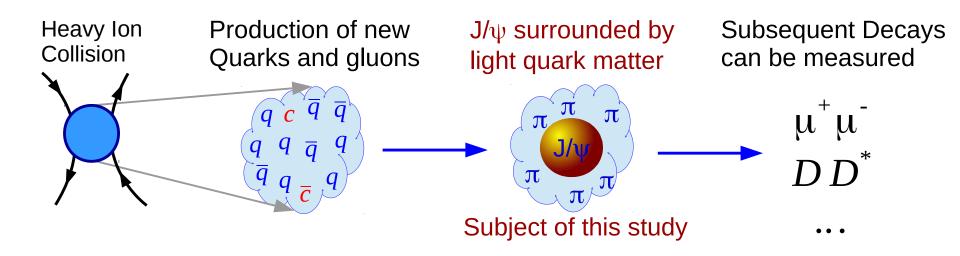

Color degrees of freedom 3X3=1+8 singlet and octet QQbar


Soft (relative momentum)

Ultra soft (binding energy)t

Brambilla

Quarkonium with NR EFT: potential NonRelativistic QCD (pNRQCD)



 $\mathcal{L}_{\text{pNRQCD}} = \sum_{k} \sum_{n} \frac{1}{m^{k}} c_{k}(\alpha_{s}(m/\mu)) \times V(r\mu', r\mu) \times O_{n}(\mu', \lambda) r^{n}$

Successful description of spectra!

Properties of J/ψ in light quark matter

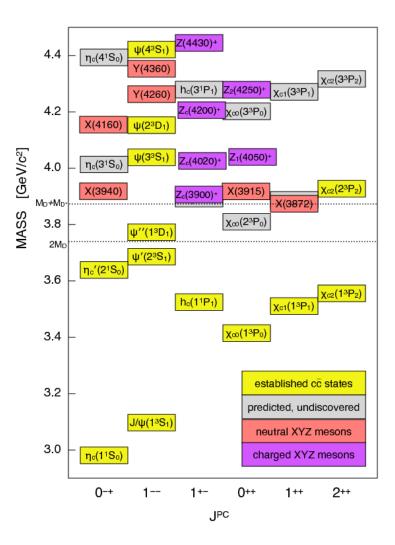
Cleven

Previous Studies include

Chiral Lagrangians

Haglin and C. Gale, PRC 63; Blaschke et al., PPNL 9 (2012) 7;...

• Quark model Calculations

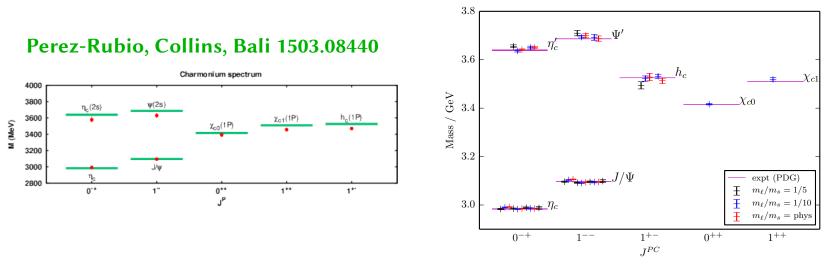

Zhou and Xu, PRC 85; Maiani et al., NP A 741 (2004) 273,NP A 748 (2005) 209;...

Here: at the same time

- SU(4) Chiral Lagrangian
 - Effective Lagrangian
 - Unitarized Amplitudes
- Finite Temperatures
 - Imaginary Time Formalism

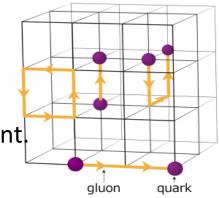
Charmonium, Hybrid and Exotic Spectroscopy with Charm Quarks in Lattice QCD

Ryan, Cheung,G



- Plethora of unexpected charmonium-like (X,Y,Z) states discovered experimentally
- Masses and widths of some D_s states significantly lower than those expected from quark model.
- Tetraquarks? Molecules? Cusps? Hybrids?
- First principles calculations using lattice QCD to understand these states.

Charmonium below threshold - "gold-plated"


Ryan

- Methods: tested, validated; Different actions in agreement
- High statistics and improved actions for precise results.
- Simulation at $m^{phys}{}_{a}$ or extrapolation $m \rightarrow m^{phys}{}_{a}$.
- Discretisation errors O(am_c) and O(am_b) under control.

No disconnected diagrams in $c\bar{c}$ spectrum: OZI suppressed - assumed to be small \Rightarrow mixing with lighter states not included.

Charmonium, HPQCD 1411.1318

Prelovsek & Leskovec 1307.5172

Padmanath, Lang, Prelovsek 1503.03257 Prelovsek, Lang, Leskovec, Mohler: 1405.7615 X(3872) not found if c c not in basis.

Ground state: $\chi_{c1}(1P)$ DD scattering: pole just below thr. Location of thr., finite volume effects controlled? 13 expected 2-meson states found

First coupled channel results with charm quarks by HAL QCD suggest Z_c^+ is not a resonance.

HAL QCD recently did a first coupled-channel analysis [1602.03465]. $\pi J / \Psi - \rho \eta_c - D D$

Challenges:

- The : Z_c⁺ (and most of the XYZ states) lies above several thresholds and
- so decay to several two-meson final states
- requires a coupled-channel analysis for a rigorous treatment
- on a latice the number of relevant coupled-channels is large for high energies.

Scattering of charmed mesons from lattice QCD D π , D η , Ds K scattering

Moir (Hadron Spectrum Collaboration) (1607.07093)

First lattice QCD calculation of coupled-channel scattering including heavy quarks $D\pi$, $D\eta$, Ds K scattering (at m_{π} = 391 MeV)

Strong decays of X(3915)

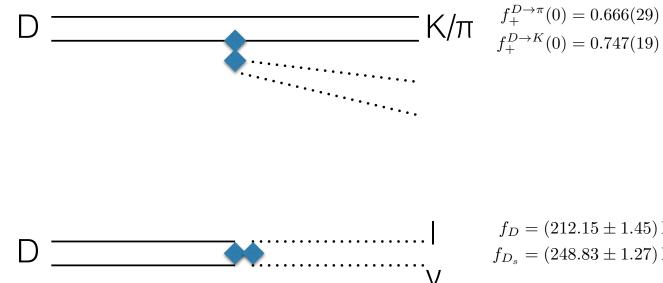
i) have been analyzed from a conventional as well as from an unconventional quark model description.

ii) The X(3915) to D bar D decay can not discriminate between both descriptions once momentum dependent corrections are taken into account.

iii) The X(3915) to $J/\psi\omega$ decay can not be consistently explained from a Cornell description. However, an unconventional description may accommodate all the experimental information predicting a quite big branching ratio for this OZI non allowed decay.

iv) The PDG assignment of X(3915) as a conventional state should not be taken for granted.

CHARM and ELECTRO- WEAK INTERACTION


Charge current decays: leptonic and semileptonic

FCNC processes, D mixing and rare decays

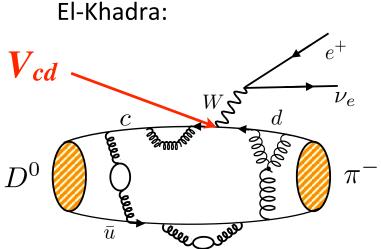
Nonleptonic decays and CP asymmetry

QCD needed!

Leptonic, semileptonic and rare decays

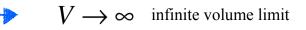
Košnik, El-Khadra, Riggio

[FLAG based on FNAL/MILC '14 and ETM '14]


 $f_D = (212.15 \pm 1.45) \,\mathrm{MeV}$ $f_{D_s} = (248.83 \pm 1.27)\,\mathrm{MeV}$ [FLAG based on HPQCD '10, '11]

CKMFitter (using unitarity) $|V_{cd}| = 0.22529^{+0.00041}_{-0.00032}$ $|V_{cs}| = 0.973394^{+0.00074}_{-0.000096}$

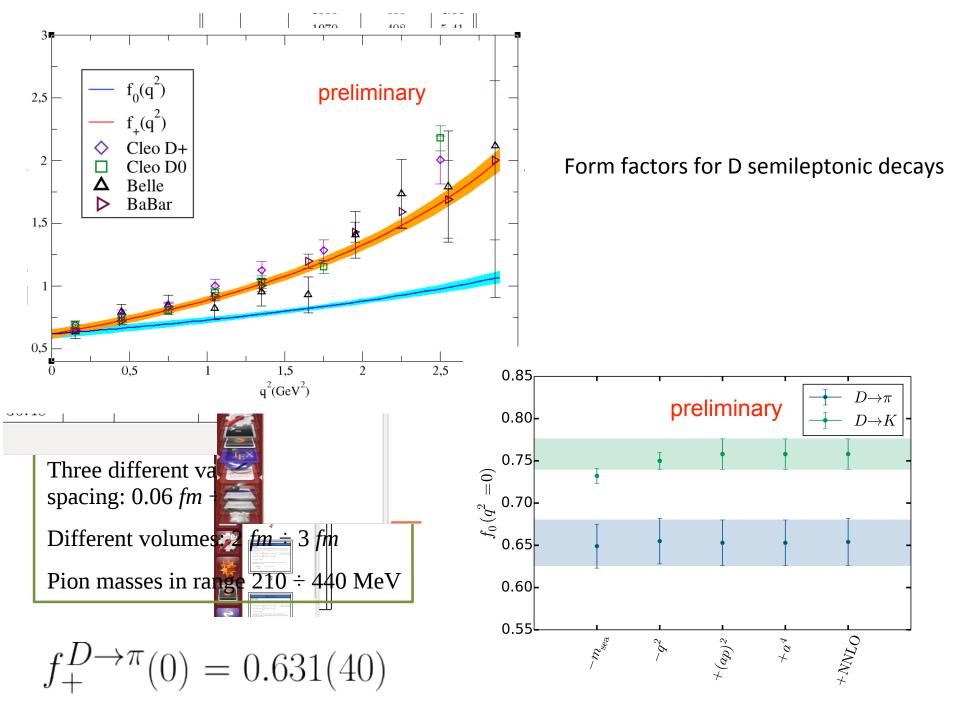
Direct extraction using lattice (HFAG+FLAG) $|V_{cd}| = 0.2164(63)$ Leptonic* $|V_{cs}| = 1.008(21)$ $|V_{cd}| = 0.214(12)$ Semileptonic* $|V_{cs}| = 0.975(32)$


Lattice QCD in leptonic and semileptonic

example: $D \to \pi \ell \nu$

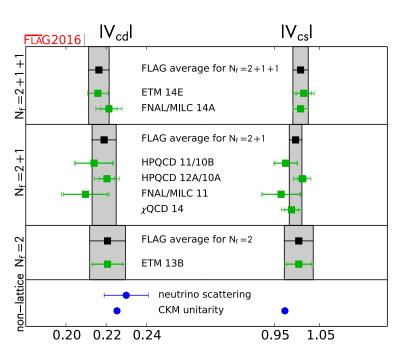
generic weak process involving hadrons:





$$\rightarrow$$
 $a \rightarrow 0$ continuum extrapolation

three extrapolations


Riggio

Implications for $|V_{cs}|$, $|V_{cd}|$

El-Khadra

S. Aoki et al (FLAG review, arXiv:1607.00299)

errors on $|V_{cs}|$ and $|V_{cd}|$ are dominated by experiment (PDG 2015, arXiv:509.02220):

 $|V_{cd}| = 0.217 \ (1)_{LQCD} \ (5)_{exp}$ $|V_{cs}| = 1.007 \ (4)_{LQCD} \ (16)_{exp}$

(based on the PDG average of 2+1 & 2+1+1 flavor LQCD results; average is dominated by FNAL/MILC)

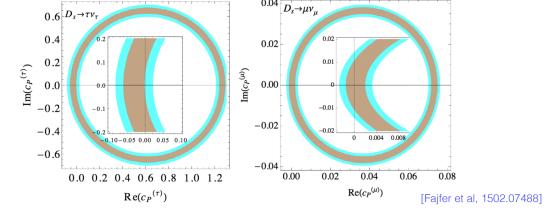
 2σ tension with unitarity:

$$|V_{cs}|^2 + |V_{cd}|^2 + |V_{cb}|^2 - 1 = 0.064(32)$$

Charm charged current decays: chance for NP

Košnik

[Barranco et al, 1303.3896]


- NP in charged curreunt processes
- (like in B: in angular correlations of B -> $K^*\mu\mu$, RK and $R_{D(D^*)}$ ٠

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cs} \left[(\bar{s}_L \gamma^\mu c_L) (\bar{\nu}_L \gamma_\mu \ell) + \frac{c_S^{(\ell)}(\bar{s}c)(\bar{\nu}_L \ell_R)}{\bar{s}c} + \frac{c_S^{(\ell)}(\bar{s}\gamma_5 c)(\bar{\nu}_L \ell_R)}{\bar{s}c} \right]$$
[Fajfer et al, 1502.07488]

$$\begin{array}{c} D \to K l \nu_l \text{ can probe } \mathsf{c}_{\mathsf{s}} \\ \hline D \to l \nu_l \\ D \to K^* l \nu_l \end{array} \right] \mathsf{c}_{\mathsf{p}} \text{ can probed } \mathsf{c}_{\mathsf{p}} \end{array}$$

Naive New Physics scale sensitivity, $c_P \sim v^2/M^2$

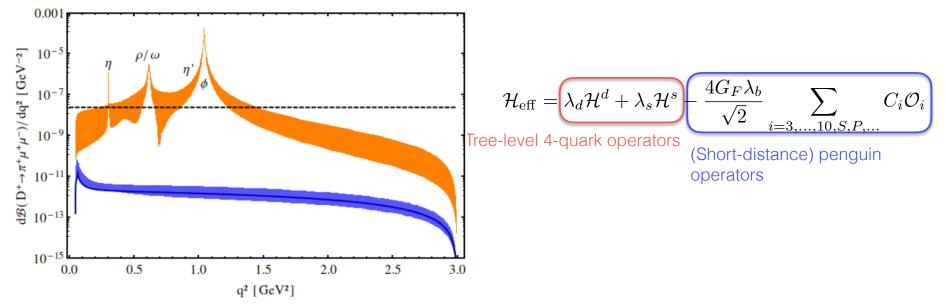
M> 1.7 TeV

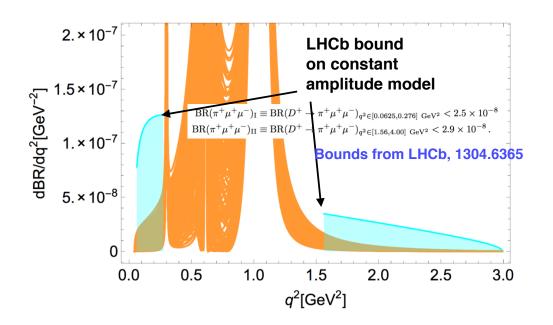
0.04

Typical UV realisations involve either charged scalar (two Higgs doublet model), charged vector (W', WR), or leptoquark with charge 5/3, 2/3, or 1/3.

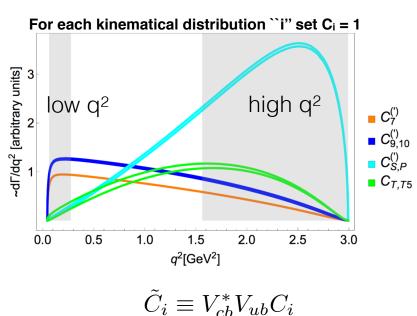
Charm physics as a part of flavour physics

Flavor physics in the Standard Model


- Absence of FCNC at tree level (& GIM suppression of FCNC @loop level)
- Almost no CP violation at tree level
- Flavour Physics is extremely sensitive to New Physics (NP)
- In competition with Electroweak Precision Measurements


(Martinelli@CHARM2016)

CHARM FCNC processes


Rare charm decays

- Flavour changing neutral currents in the up sector are few: D-bar D mixing, rare (semi)-leptonic decays, rare top decays.
- Charm is the only low-energy probe of up-quark flavour changing neutral currents (FCNCs)
- GIM broken locally by long-distance effects. Resonances distinguish s and d quarks. Genuine FCNCs are severely obscured. De Boer, Hiller 1510.0031

SF, NK, 1510.00965;

Low-q² region naively more sensitive to dipole, vector and axial vector operators;

High-q² best suited to constrain
 (pseudo)tensor (T, T₅) and (pseudo)scalar
 (S,P)

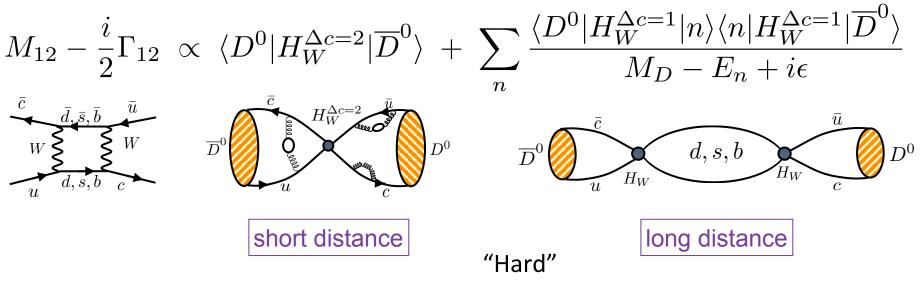
 $Br(D^0 \to \mu\mu) < 6.2 \times 10^{-9}$

	$ ilde{C}_i _{\max}$		
	$BR(\pi\mu\mu)_{I}$	${ m BR}(\pi\mu\mu)_{ m II}$	$BR(D^0 \to \mu\mu)$
$egin{array}{c} ilde{C}_7 & & \ ilde{C}_9 & & \ ilde{C}_{10} $	2.4	1.6	-
$ ilde{C}_9$	2.1	1.3	-
$ ilde{C}_{10}$	1.4	0.92	0.63
$ ilde{C}_S$	4.5	0.38	0.049
$ ilde{C}_P$	3.6	0.37	0.049
$ ilde{C}_T$	4.1	0.76	-
	4.4	0.74	-
$\left \tilde{C}_9 = \pm \tilde{C}_{10} \right $	1.3	0.81	0.63

LHCb1 (1305.5059)

Concrete models of BSM

- weak triplet boson: if to explain R_{D(*)} the bounds on τ→3µ and D<u>D</u> imply no observable effect on rare D decays
- scalar leptoquark in rep. (3,2,7/6): DD is also competitive, effect in A_{FB}
- vector leptoquark in rep. (3,1,5/3): sensitive to rare D decays
- leptoquarks with flavour structure
- **2HDM**: scalar operators, sensitive to $D^0 \rightarrow \mu\mu$
- Z' models are typically better probed in DD
- MSSM, vector like quark singlets, warped dimensions,

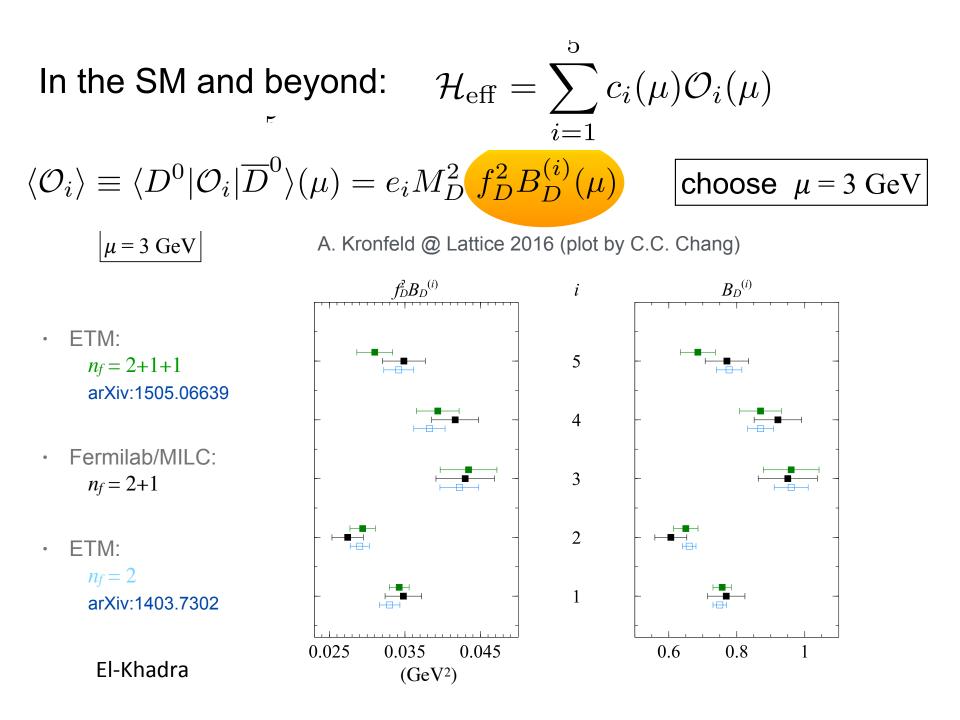

Greljo et al, 1506.01705, de Boer, Hiller, 1510.00311; Burdman hep-ph/0112235; Fajfer, NK1510.00965; Paul et al 1212.4849; Golowich 0903.2830

If a model tries to hide from B and K constraints dimensions,

it is likely it will hit the FCNC constraints in the charm sector

$D-ar{D}$ mixing

In talks by Lenz, El-Khadra, Martinelli and Ciuchini


• large contribution

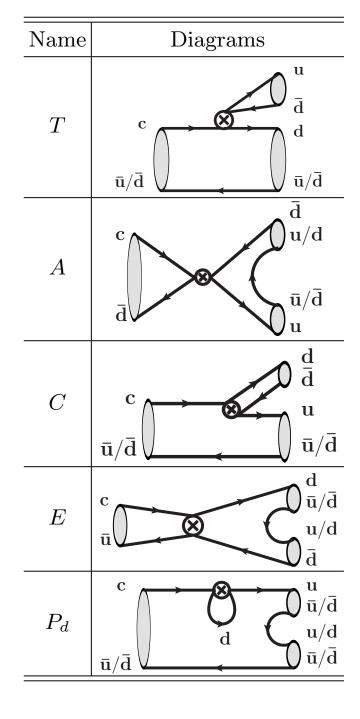
"Simple"

can use the same methods as for *B* mixing (and decay constants, form factors) BSMs with heavy new particles can contribute here

 intermediate state can include multiple (>2) hadrons: formalism for multi-hadron states still under development (Hansen & Sharpe, arXiv:1602.00324, 2016 PRD)

- not a problem for Kaon mixing
- → first calculation of long-distance contribution already exists (RBC/UKCD, arXiv:1406.0916, 2014 PRL)

Comparison with other meson mixing Λ (TeV)K CPVD CPV B_d CPC B_s CPClower bound 4.8×10^5 3.6×10^4 3.1×10^3 760


Nonleptonic weak decays

On the quark level leading contributions are:

$$H_{\text{eff}}^{\Delta C = \Delta S} = \frac{G_F}{\sqrt{2}} U_{ud} U_{cs}^* [C_2 \bar{s}^{\alpha} \gamma_{\mu} (1 - \gamma_5) c_{\alpha} \bar{u}^{\beta} \gamma^{\mu} (1 - \gamma_5) d_{\beta} + C_1 \bar{u}^{\alpha} \gamma_{\mu} (1 - \gamma_5) c_{\alpha} \bar{s}^{\beta} \gamma^{\mu} (1 - \gamma_5) d_{\beta}] + \text{H.c.},$$

$$C = \int_{W} \int_{u}^{d, s, } \int_{u}^{u} \int_{u}^{u} \int_{u}^{u} \int_{u}^{u} \int_{u}^{d, s, } \int_{u}^{u} \int$$

Two body decays, based on factorisation and FSI, (assumed to be dominated by nearby resonances) included in the paper Buccella et al, hep-ph/9411286 Santorelli talk!

There are recent analysis based od SU(3)_F flavor symmetry breaking: Hiller, Jung, Schacht,

1211.3734; Muller, Nierste, Schacht 1503.06759; Gronau 1501.03272, Santorelli

a global fit to topological amplitudes using all available branching ratios and the experimental information on the strong phase difference.

Santorelli:

```
\langle PP | \mathscr{H} | D 
angle \sim \langle \mathbf{1} \oplus \mathbf{8} \oplus \mathbf{27} | \left( \mathbf{3} \oplus \overline{\mathbf{6}} \oplus \mathbf{15} \right) \left| \overline{\mathbf{3}} 
ight
angle
```

Wigner-Eckart theorem:

 $\langle \mathbf{8} | | \mathbf{15} | | \overline{\mathbf{3}} \rangle \quad \langle \mathbf{27} | | \mathbf{15} | | \overline{\mathbf{3}} \rangle \quad \langle \mathbf{8} | | \overline{\mathbf{6}} | | \overline{\mathbf{3}} \rangle$

Fit reduced from 17 amplitudes on 5 complex r educed matrix elements

Santorelli:

CP Violation in the Decays: The Direct CPV

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

$$|\mathscr{A}(M^0 \to f)| \neq |\mathscr{A}(\bar{M}^0 \to \bar{f})|$$

$$\left| \underbrace{M^{0}}_{M^{0}} \underbrace{f}_{M^{0}} \right|^{2} \neq \left| \underbrace{\bar{M}^{0}}_{\bar{f}} \underbrace{\bar{f}}_{\bar{f}} \right|^{2}$$

A nonzero direct CP asymmetry is present only when the decay amplitude is

$$\mathscr{A} = A_1 \ e^{i\delta_1} + A_2 \ e^{i\delta_2}$$

the CP conjugate amplitude is

$$\bar{\mathscr{A}} = A_1^* e^{i\delta_1} + A_2^* e^{i\delta_2}$$

and the CP asymmetry is:

$$a_{\rm CP}^{dir} = \frac{|\mathscr{A}|^2 - |\mathscr{\bar{A}}|^2}{|\mathscr{A}|^2 + |\mathscr{\bar{A}}|^2} = \frac{2\,\Im(A_1^*\,A_2)\,\sin(\delta_1 - \delta_2)}{|A_1|^2 + |A_2|^2 + 2\,\Re(A_1^*\,A_2)\,\cos(\delta_1 - \delta_2)}$$

CP Asymmetries: The SCS case

The amplitudes are made of two parts. For the D^0 , for example, we have:

$$\mathscr{A}^{SCS} = \frac{1}{2} (V_{cs}^* V_{us} - V_{cd}^* V_{ud}) A^{(1,2)} e^{i\delta} - \frac{1}{2} V_{cb}^* V_{ub} A^{(P)} e^{i\delta'}$$

and so the direct CP asymmetry is given by

$$a_{CP}^{dir} \approx \eta A^2 \lambda^4 \sin(\delta - \delta') \left[rac{A^{(P)}}{A^{(1,2)}}
ight] \approx (6 imes 10^{-4}) \sin(\delta - \delta') \left[rac{A^{(P)}}{A^{(1,2)}}
ight]$$

- Strong phase difference could be large due to the resonances
- Penguin amplitude of the order of tree amplitude

$$a_{CP}^{dir} pprox 10^{-4} \div 10^{-3}$$

$$\Delta A_{\rm CP} = a_{\rm CP}(K^+K^-) - a_{\rm CP}(\pi^+\pi^-)$$

$$\Delta A_{\rm CP} = (-0.82 \pm 0.21 \pm 0.11)\% \qquad (\rm LHCb\,(2012))$$

$$= (-0.62 \pm 0.21 \pm 0.10)\% \qquad (\rm CDF\,(2012))$$

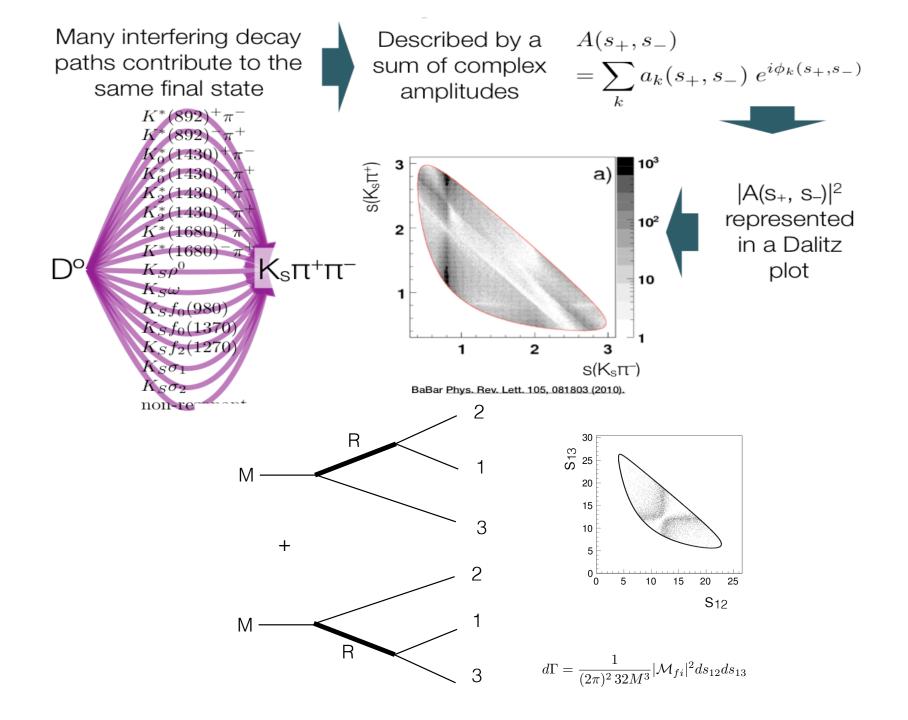
$$= (-0.87 \pm 0.41 \pm 0.06)\% \qquad (\rm Belle\,(2012))$$

$$\Delta A_{\rm CP} = -(0.16 \pm 0.19)\%$$

HFAG (July 2016)

Multi-body charm decays

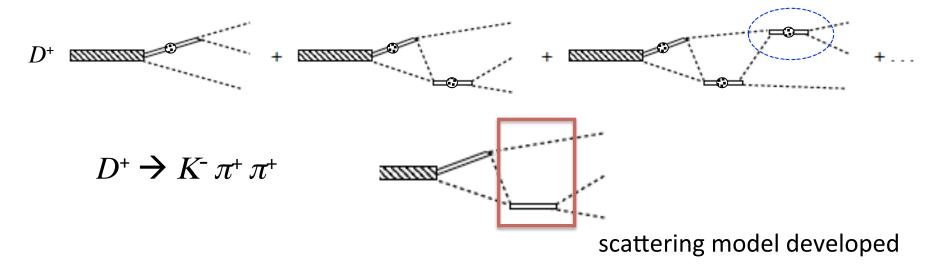
Rademacker: Why to study it?


QM is intrinsically complex:

- Wave functions/transition amplitudes etc: $\psi = a e^{i\alpha}$. Observable: $|\psi|^2$. Only half the information. How do I get the rest?
- Note that the rest is very interesting CP violation in the SM comes from phases!
- Answer: Interference effects:

$$\begin{aligned} \psi_{\text{total}} &= a e^{i\alpha} + b e^{i\beta} + \dots \\ \left| \psi_{\text{total}} \right|^2 &= |a e^{i\alpha} + b e^{i\beta} + \dots | = a^2 + b^2 + 2ab \cos(\alpha - \beta) + \dots \end{aligned}$$

Derkach Not only that:


Charm inputs are of great importance to the gamma combination and thus to the search of NP effects.

Coupled-channel Dalitz plot analysis of $D^+ \to K^- \pi^+ \pi^+$ decay

- Partial wave decay amplitudes can be extracted
- Nakamura Information of hadron interactions and resonances thereby
 - CPV analysis, new physics search

Channels (partial wave) $(\overline{K}\pi)_{S}^{I=1/2}\pi$, $(\overline{K}\pi)_{P}^{I=1/2}\pi$, $(\overline{K}\pi)_{D}^{I=1/2}\pi$, $(\pi\pi)_{P}^{I=1/2}\overline{K}$, $(\overline{K}\pi)_{S}^{I=3/2}\pi$, $(\pi\pi)_{S}^{I=2}\overline{K}$ resonances κ , $K_{0}^{*}(1430)$ $K^{*}(892)$ $K_{2}^{*}(1430)$ $\rho(770)$ No flat background

Large hadronic rescattering effects!

Closing remark

Progress in Charm in QCD

CHARM in EW interactions

CHARM is now 42 years old!

Facing interesting future!