Production of pentaquarks in pA-collisions

Marat Siddikov
In collaboration with Iván Schmidt

Universidad Técnica Federico Santa María

Phys.Rev. D93 (2016), 094005
Pentaquark fact sheet

LHCb discovery, > 9σ significance
- PRL 115 (2015), 072001

Possibility of pentaquarks
- M. Gell-Mann, Phys. Lett. 8 (1964) 214

Possibility of \(\bar{c}c \) pentaquarks

Indirect evidence from \(\Lambda^0_b \rightarrow J/\psi \pi^- p \) (\(\sim 3\sigma \))
[arXiv:1606.06999]

Possibility of \(\bar{c}c \) pentaquarks
- Intrinsic charm of proton
- Attractive force between \(\bar{c}c \) and light baryons
- More exotic exotics: \(\bar{c}c - He^3 \) bound states
- Many new exotic states in \(\bar{c}c \) sector

\(P^+_c(4380), \Gamma = 205 \text{ MeV} \)
\(P^+_c(4450), \Gamma = 39 \text{ MeV} \)

\(\bar{c}c \) in other exotics: tetraquarks
- \(Z_c(3900) \)
- \(Z_c(3900)^+ ? \)
- \(X(3872) \)
- \(X(4140)? \)
- \(X(4274)? \)
- \(Z(4430) \)
- \(Z_c(4025)^+ ? \)
What is a pentaquark?

Molecule \((D_c, \bar{D}_c, \ldots) + \Sigma_c, \bar{\Sigma}_c\)

- M. Karliner et. al., PRL 115 (2015), 122001
- H. X. Chen et. al., PRL 115 (2015), 172001
- G. J. Wang et. al., PRD 93, 034031.
- [many developments in this direction ...]

Non-molecular structure

- A. Mironov et. al, JETP Lett. 102 (2015), 271
- S. Takeuchi et. al, arXiv:1608.05475

Common points of all models

- Should have other decay channels
- Should have siblings from multiplets

Threshold singularity

- F. K. Guo et. al, PRD 92 (2015), 071502
- Anisovich et. al, MPL. A 30, 1550212
Can we rule out a triangle singularity?

Cusp vs LHCb peak

- \(M_{Pc} - M_{\chi c_1} - M_P = 0.9 \pm 3.1 \text{ MeV} \)

\[
M_{Pc} - M_{\chi c_1} - M_P = 0.9 \pm 3.1 \text{ MeV}
\]

Argand plots \([\chi c_P \text{ vs. LHCb}]\)

- Argand plots [\(\chi c_P \text{ vs. LHCb}]\)
How can we rule out a threshold cusp?

Check for existence of a peak in other decay channels

- Observation in $\Lambda_b^0 \rightarrow J/\psi \pi^- p$: $\sim 3\sigma$

 [arXiv:1606.06999]

- Study other production mechanisms
What are the production mechanisms of P_c^+?

Λ_b decays [LHCb]

- $\Lambda_b^0 \to b u c c d \to P_c^+ \to J/\psi p$
- $\Lambda_b \to W^+ s u c u c \to \Lambda_b^0 \to b u c c d \to P_c^+$

$\gamma p \to P_c^+ \to J/\psi p$ [proposed]

- V. Kubarovsky et al, PRD 92 (2015), 031502
- M. Karliner et. al, PLB 752 (2016), 329.

$\pi N \to P_c \to J/\psi N$ [proposed]

- J-PARC: π-beams up to 20 GeV.
- Can check existence of P_c^0.

Cross-section sizeable for JLAB 12 GeV.
Our suggestion: pentaquark production in pA

Two-stage process
- Production of $\bar{c}c$ pair
- Fusion $\bar{c}c + p \rightarrow P_c^+ + X$.

Coherence and formation time
$E_g \sim 10\text{GeV}$: [PLB206 (1988) 685-690]

$t_{\text{form}} \sim 0.2\text{fm}, \quad t_{\text{coh}} \sim 10\text{fm}$

\Rightarrow Bare $\bar{c}c$ pair passes through the nucleus

Kinematic constraint
- $\bar{c}c$ should be slow in nucleus rest frame

Main advantage
- No electroweak intermediaries, expect higher cross-sections
Distributions of $\bar{c}c$ dipoles

Dipole size distribution

- Mild dependence on \sqrt{s}, $(\bar{c}c)$
- Exponential decrease with size
 - For reference: $\sigma_{tot}(J/\psi) \gtrsim 10^4$ nb

⇒ Expect significantly smaller cross-sections than for charmonium.

Flux energy dependence (nucleus rest frame)

- Suppression for onshell $\bar{c}c$ near endpoint
- Extra interactions/emissions of $\bar{c}c$

Higher $E_{\bar{c}c}$ permitted (smaller cross-section).
P_c^+ production mechanisms in LO pQCD

$\bar{c}c = 1_c, P$-wave $[P_c^+ = \chi_c p]$ $\bar{c}c = 1_c, S$-wave $[\psi(2S)p]$

$\bar{c}c = 8_c$ $[P_c^+ = \bar{D}^{(*)} + \Sigma_c]$

= sum over all diagrams with different gluon connections

Dipole model: gluons \Rightarrow dipole cross-sections
Kinematics and choice of framework

\[\bar{c}c = 1_c, P\text{-wave} \]

Kinematic window
- \(g(x_1) \) suppressed at \(x_1 \sim 1 \)
- WF \(\Psi_{P_c^+}(x_1, \ldots) \) suppressed at \(x_1 \sim 0 \)
- [\(\bar{c}c \) “slow” in the nucleus rest frame]
- \(\langle x_1 \rangle \sim 0.2 - 0.3 \) \(\langle x_2 \rangle \sim m_c^2/s \ll 1 \)

Relation of \(x_1 \) to a rapidity of \(P_c^+ \)

\[
y_{P_c} = \frac{1}{2} \ln \left(\frac{P_{c+}}{P_{c-}} \right) = \ln \left(\frac{(1 + x_1) \sqrt{s}}{\sqrt{M_{P_c}^2 + P_{\perp}^2}} \right),
\]

\(\Rightarrow \) Rapidity distribution of \(P_c^+ \) \(\Leftrightarrow \) access to l.c. fraction of \(\bar{c}c \) in \(P_c^+ \)
What should we take into account in evaluations?

\[\bar{c}c = 1_c, P\text{-wave} \]

2N correlator
- Studied at SRC at SLAC, JLAB, ...
- Shape is similar to deuteron WF
- Normalization \(\sim AZ; \Phi_{2N} \equiv \rho_{2N}^{1/2} \)

Gaussian param. for nucleon WF
- \[|\psi_p(\{\alpha_i, \vec{r}_i\})|^2 = |f_3(\alpha_1, \alpha_2, \alpha_3)|^2 \frac{1}{\pi^2 R_p^4} \exp \left(-\frac{1}{4 R_p^2} (r_1^2 + r_2^2 + r_3^2)\right) \bigg|_{\sum_i \vec{r}_i = 0} \]
- \[f_n(\alpha_1, ..., \alpha_n) = \frac{N_n}{\left(M_B^2 - \sum_{i=1}^n m_i^2 \right) \prod_{i=1}^n \alpha_i} \bigg|_{\sum_i \alpha_i = 1} \]

From S. J. Brodsky et al. PLB 93 (1980), 451
What do we know about pentaquark WF?

Tightly bound state

- Superposition: \(|P^+_c\rangle = [\bar{c}c][uud] + [\bar{c}u][udc] + [\bar{c}d][uuc] + ... \)
- \(\langle r_{cc}\rangle \approx 1 - 2 \text{ fm} \)
- Should evaluate a wave function in some model

Charmonium molecule

- \(\bar{c}c \) in color singlet
- Small size, \(\langle r_{cc}\rangle \approx 0.4 - 0.7 \text{ fm} \)
- Far from center, \(\langle R_{cc}\rangle \gtrsim 1 \text{ fm} \)

\(\bar{D}(*)\Sigma_c \) molecule

- Colors of \(\bar{c}c \) uncorrelated
- \(\langle r_{cc}\rangle \approx 2 - 3 \text{ fm} \) (far)
- \(\langle R_{cc}\rangle \lesssim 0.5 \text{ fm} \)
What do we know about pentaquark WF?

Tightly bound state

- Superposition: \(|P^+_c\rangle = [\bar{c}c][uud] + [\bar{c}u][udc] + [\bar{c}d][uuc] + \ldots \)
- \(\langle r_{cc} \rangle \approx 1 - 2 \text{ fm} \).
- Should evaluate a wave function in some model

Charmonium molecule

- \(\bar{c}c \) in color singlet
- Small size, \(\langle r_{cc} \rangle \approx 0.4 - 0.7 \text{ fm} \)
- Far from center, \(\langle R_{cc} \rangle \gtrsim 1 \text{ fm} \)

\[\psi \left(\vec{r}_i, \vec{R}_{cc}, \vec{r}_{cc} \right) = \psi_{\text{baryon}}(\vec{r}_i) \times \psi_{\text{relative}}(\vec{R}_{cc}) \times \psi_{\text{meson}}(\vec{r}_{cc}) \]

\(\bar{D}^*(\Sigma_c) \) molecule

- Colors of \(\bar{c}c \) uncorrelated
- \(\langle r_{cc} \rangle \approx 2 - 3 \text{ fm (far)} \)
- Far from center, \(\langle R_{cc} \rangle \lesssim 0.5 \text{ fm} \)
How much are results sensitive to $\langle R_{cc}\rangle, \langle r_{cc}\rangle$?

Sensitivity of σ_{P_c} [mb] on $\langle R_{cc}\rangle, \langle r_{cc}\rangle$

- Sensitivity is sizeable
- σ_{P_c} peaks at $\langle R_{cc}\rangle \sim 3\,\text{fm}$
- \Rightarrow Please consider all the following results as a factor-of-two estimates

Fix $\langle R_{cc}\rangle$ from experiment?

- Mild sensitivity of p_T-slope (interplay with k_F, B_{prot}).

Rapidity distribution

- $y \rightarrow y_{\text{min}}$: suppression from Ψ_{P_c}
- $y \gg y_{\text{min}}$: suppression from $g(x_1)$
How large are the cross-sections?

Cross-sections for $pPb \rightarrow P_c^+$ [nb]

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 GeV</td>
<td>0.6 μb</td>
<td>16</td>
<td>6.5</td>
<td>2.9</td>
</tr>
<tr>
<td>7 TeV</td>
<td>1.9 μb</td>
<td>120</td>
<td>137</td>
<td>19</td>
</tr>
<tr>
<td>13 TeV</td>
<td>2 μb</td>
<td>163</td>
<td>208</td>
<td>21</td>
</tr>
</tbody>
</table>

- $(a) = 1_c, 1P$
- $(b) = 1_c, 2S$
- $(c) = 8_c$, with g emission
- $(d) = 8_c$, with multiple interaction

Rough estimate of cross-sections

- $\frac{d\sigma_{pA\rightarrow P_c^+}}{dy_{Pc}} \sim |M_{fi}|^2 \frac{d\sigma_{pp\rightarrow M_{cc}}}{dy_{Pc}}$
- Charmonium cross-section $d\sigma_{pp\rightarrow M_{cc}}$ from experiment, M_{fi}-overlap integral
- Reasonable agreement if experimental cross-sections are used

ALICE @forward rapidities [PLB 704 (2011), 442]:

$$\left| \frac{d\sigma}{dy}_{pp\rightarrow J/\psi} \right| \approx 3 \mu b \Rightarrow \left| \frac{d\sigma}{dy}_{pA\rightarrow J/\psi} \right| \approx 600 \mu b$$
How do we compare with other mechanisms?

Cross-section “per nucleon” [nb]

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 GeV</td>
<td>2.9</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>7 TeV</td>
<td>9</td>
<td>0.58</td>
<td>0.66</td>
<td>0.09</td>
</tr>
<tr>
<td>13 TeV</td>
<td>9.6</td>
<td>0.78</td>
<td>1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- (a) = 1_c, 1P
- (b) = 1_c, 2S
- (c) = 8_c, with g emission
- (d) = 8_c, with multiple interaction

LHCb mechanism

Suppression $\sim m_b^2 m_s^2 G_F^2$

Full production rate very small:

$$\sigma_{\text{tot}} \sim \frac{10^3 \text{events}}{3 \text{fb}^{-1}} \sim 300 \text{fb} \sim 3 \times 10^{-4} \text{nb}$$

Cross-sections at least not smaller!

Electroproduction cross-sections

- V. Kubarovsky et al, PRD 92 (2015), 031502
- M. Karliner et. al, PLB 752 (2016), 329.

$$\sigma_{ep \rightarrow e P_c^+ X} \sim \frac{d^2 n}{dE_\gamma dQ^2} \otimes \sigma_{\gamma p \rightarrow P_c^+ X}, \quad \frac{d^2 n}{dE_\gamma dQ^2} \sim \frac{\alpha_{em}}{\pi}$$
Summary

P_c^+ can be produced in pA collisions

- The cross-sections are sizeable, contain important information about P_c^+ internal structure
 - Rapidity distribution \Leftrightarrow access to light-cone fraction of $\bar{c}c$ in P_c^+
 - Slope of p_T distribution \Rightarrow mild sensitivity to average distance between $\bar{c}c$ and center of mass

- Suggested P_c^+ production occurs in the following kinematics:
 - Collider kinematics (RHIC, LHC, ...): very forward rapidities
 - Fixed-target experiments (AFTER@LHC, PANDA, ...): central rapidities

Outlook

- If $\exists P_c^0 = udd\bar{c}c$ (neutral “sibling” of P_c^0), this should be also produced via $\bar{c}c + n \rightarrow P_c^0$ subprocess in pA collisions.
- If there are heavier pentaquark states, can also see them!
Thank You for your attention!