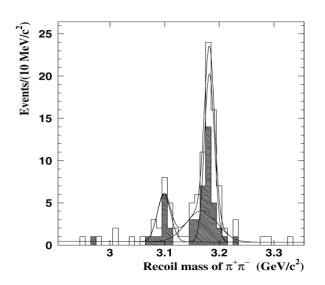
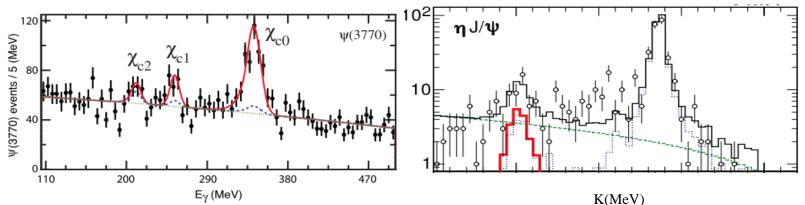
Non-DD decays of the $\psi(3770)$ at BESIII

Jingyi Zhao
(On behalf of BESIII Collaboration)
Institute of High Energy Physics, CAS

Outline

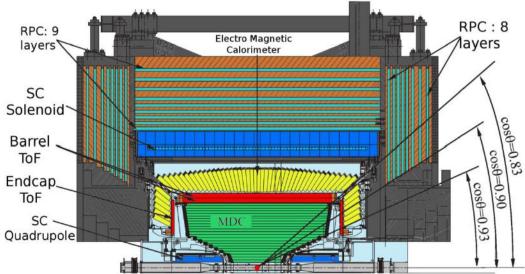

- Introduction
- BESIII experiment
- Non- $D\overline{D}$ decays of the $\psi(3770)$ at BESIII
 - Baryonic decays of $\psi(3770)$
 - $-\psi(3770)\rightarrow\gamma\chi_{c1,2}$
 - $\psi(3770) \rightarrow \gamma \chi_{c0}$
 - $-\psi(3770) \rightarrow \gamma \eta_c$ and $\gamma \eta_c(2S)$
- Summary


Introduction

- The $\psi(3770)$ resonance is the lowest-mass $c\bar{c}$ resonance above the $D\bar{D}$ threshold. There is a long-standing puzzle in understanding of $\psi(3770)$ production and decays.
- The potential model expects that more than 99% of $\psi(3770)$ decay into $D\overline{D}$ final states.
- BES-II measured Br[$\psi(3770) \rightarrow$ non-DD] = $(15\pm5)\%$ by utilizing varied methods under the hypothesis that only one simple $\psi(3770)$ resonance exists in 3.70~3.87 GeV.
- CLEO-c obtained Br[$\psi(3770) \rightarrow$ non-DD] = $(-3.3 \pm 1.4^{+6.6}_{-4.8})\%$, which corresponds to Br[$\psi(3770) \rightarrow$ non-DD] < 9% at 90% C.L.
- Large non- $D\overline{D}$ component conflicts with theoretical prediction.

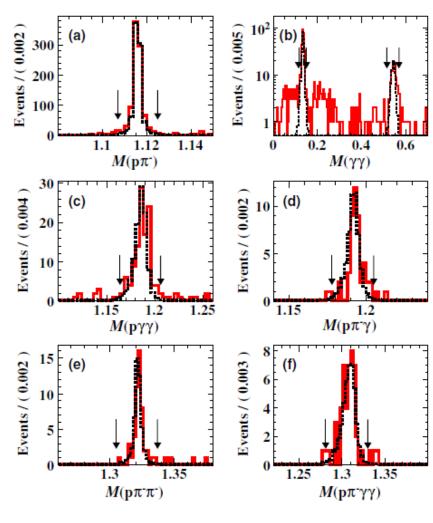
Introduction

- The BES-II Collaboration observed the first non- $D\overline{D}$ decay of $\psi(3770) \rightarrow \pi^+\pi^- J/\psi$ in 2003.
- In 2005, the CLEO Collaboration confirmed the BES-II observation of $\psi(3770) \rightarrow \pi^+\pi^- J/\psi$ and observed more exclusive non-DD decays of $\psi(3770)$:
 - $\psi(3770) \rightarrow \pi^0 \pi^0 J/\psi$
 - $\psi(3770) \rightarrow \eta J/\psi$
 - $\psi(3770) \rightarrow \gamma \chi_{c0,1}$
 - $-\psi(3770)\rightarrow\phi\eta$
- Precision measurements of non-DD decays of $\psi(3770)$ are critical to test theoretical predictions, and to better understand the nature of the $\psi(3770)$.

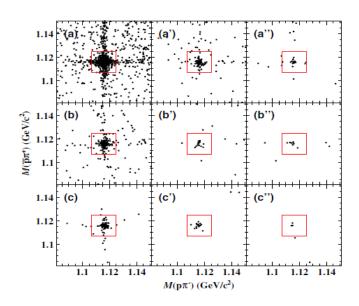

Reference: PLB 605, 63(2005); PRL 96, 082004(2006); PRL 96, 182002(2006); PRD 74, 031106(2006); PRD 73, 012002(2006)

BESIII Experiment

• BEPCII Collider:

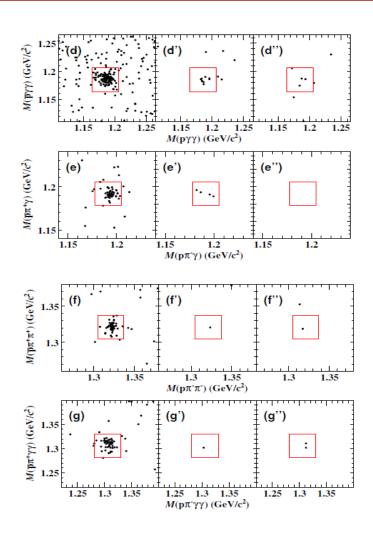

- Double ring e^+e^- collider, 2.0 GeV < E_{cm} < 4.6 GeV;
- The designed peak luminosity, 10^{33} cm⁻²s⁻¹ at the beam energy of 1.89 GeV, has been achieved on 5th April, 2016.

BESIII Detector



Data sets related to this talk:

- -- 2.92 fb⁻¹ @3.773 GeV;
- -- 106.41 M ψ (3686) data;
- -- 44.5 pb⁻¹ @3.65 GeV;
- -- 67 pb⁻¹ @ 3.542, 3.554, 3.561, 3.600 and 3.650 GeV.



- Baryonic final states of $\Lambda \underline{\Lambda} \pi^+ \pi^-$, $\Lambda \underline{\Lambda} \pi^0$, $\Lambda \underline{\Lambda} \eta$, $\Sigma^+ \Sigma^-$, $\Sigma^0 \underline{\Sigma}^0$, $\Xi^- \underline{\Xi}^+$ and $\Xi^0 \underline{\Xi}^0$ are searched for.
- Reconstructed via
 - $-\Lambda \rightarrow p\pi^-$
 - $-\pi^0 \rightarrow \gamma \gamma$
 - $-\eta \rightarrow \gamma \gamma$
 - $-\Sigma^{+}\rightarrow p\pi^{0}(\pi^{0}\rightarrow\gamma\gamma)$
 - $-\Sigma^0 \rightarrow \Lambda \gamma \ (\Lambda \rightarrow p\pi^-)$
 - $-\Xi^{-} \rightarrow \Lambda \pi^{-} (\Lambda \rightarrow p \pi^{-})$
 - $\Xi^0 \rightarrow \Lambda \pi^0 \ (\Lambda \rightarrow p\pi^-, \pi^0 \rightarrow \gamma\gamma)$

• Ignoring interference effects between continuum and resonance.

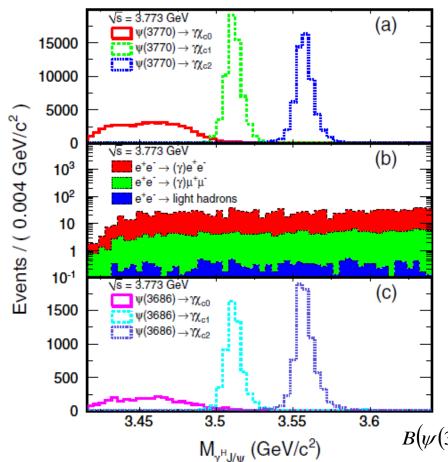
PRD 87, 112001(2013)

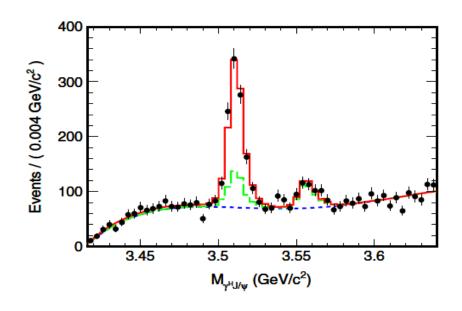
None are observed, and upper limits are set at the 90% confidence level.

$$B^{\rm up} = \frac{N_{\psi(3770)/\psi(4040) \to f}^{\rm up}}{\epsilon \times B_f \times N_{\psi(3770)/\psi(4040)} \times (1 - \Delta_{\rm sys})}$$

Mode f	N_{obs}^{f} (3.773)		$N_{\rm obs}^f$ (3.650)		$f_{co}^{3.773}$	$N_{\psi(3770) o f}^S$	$N_{\psi(3770)\to f}^{\text{up}}$	ϵ	$\Delta_{ m sys}$	$\mathcal{B}_{\psi(3770)\to f} \\ [\times 10^{-4}]$	\mathcal{B}^{up} $[\times 10^{-4}]$
$\Lambda ar{\Lambda} \pi^+ \pi^-$	844.0 ± 33.6	5.2	$14.2^{+5.6}_{-4.2}$	0.1	45.27	$200.6^{+193.1}_{-255.7} \pm 42.0$	481.2	0.1321	8.0	$1.80^{+1.74}_{-2.30} \pm 0.40$	<4.7
$\Lambda ar{\Lambda} \pi^0$	124.9 ± 14.4	3.4	$7.1^{+5.0}_{-2.2}$	0.0	42.50	$-180.3^{+94.6}_{-213.0} \pm 16.2$	83.6	0.1694	8.0	$-1.28^{+0.67}_{-1.51}\pm0.15$	< 0.7
'	74.0 ± 9.5	0.9	$3.0^{+3.6}_{-1.6}$	0.0	44.76	$-61.2^{+72.2}_{-161.4} \pm 7.9$	87.7	0.1518	8.1	$-1.22^{+1.44}_{-3.21}\pm0.19$	<1.9
$\Sigma^+ \bar{\Sigma}^-$	100.5 ± 11.9	0.7	$3.3^{+4.3}_{-1.7}$	0.1	38.27	$-22.7^{+66.1}_{-165.0} \pm 5.1$	96.0	0.1975	8.0	$-0.21^{+0.63}_{-1.56}\pm0.05$	<1.0
$\Sigma^0 \bar{\Sigma}^0$	43.5 ± 6.7	0.0	$0.0^{+2.2}_{-0.0}$	0.0	38.69	$43.5^{+6.7}_{-85.4} \pm 5.8$	56.6	0.1752	8.0	$0.30^{+0.05}_{-0.58} \pm 0.05$	< 0.4
E-Ē+	48.5 ± 7.0	0.0	$0.5^{+2.8}_{-1.4}$	0.0	41.74	$27.6^{+58.9}_{-117.1} \pm 3.7$	119.7	0.1060	8.1	$0.31^{+0.66}_{-1.32} \pm 0.05$	<1.5
Ξ ⁰ Ξ̄ ⁰	43.5 ± 6.6	1.3	$2.0^{+3.2}_{-1.2}$	0.0	40.13	$-38.1^{+48.6}_{-128.6} \pm 5.6$	60.7	0.0581	8.2	$-0.80^{+1.03}_{-2.72}\pm0.14$	<1.4

First measurement!


In this work, baryonic decays of $\psi(4040)$ are also searched for. No significant signal is observed, upper limits are set at 90% C.L..


$$B^{\text{up}} = \frac{N_{\psi(3770)/\psi(4040) \to f}^{\text{up}}}{\epsilon \times B_f \times N_{\psi(3770)/\psi(4040)} \times (1 - \Delta_{\text{sys}})}$$

Mode f	$N_{\rm obs}^f$ (4.009)	$N_{\rm B}^f$ (4.009)	$N_{\rm obs}^f$ (3.650)	$N_{\rm B}^f$ (3.650)	$f_{ m co}^{4.009}$	$N_{\psi(4040) ightarrow f}^{S}$	$N_{\psi(4040) o f}^{\mathrm{up}}$	ϵ	$\Delta_{ m sys}$	$\mathcal{B}_{\psi(4040)\to f} \ [imes 10^{-4}]$	$\mathcal{B}^{\rm up} \\ [\times 10^{-4}]$
$\Lambda ar{\Lambda} \pi^+ \pi^-$	79.2 ± 10.0	20.0	$14.2^{+5.6}_{-4.2}$	0.1	7.69	$-49.2^{+33.8}_{-44.2} \pm 9.8$	35.6	0.1492	9.9	$-3.57^{+2.45}_{-3.21} \pm 0.79$	<2.9
$\Lambda ar{\Lambda} \pi^0$	$14.5^{+4.1}_{-4.3}$	0.5	$7.1^{+5.0}_{-2.2}$	0.0	6.80	$-34.3^{+15.5}_{-34.3} \pm 3.0$	12.6	0.1753	9.9	$-2.14^{+0.97}_{-2.14} \pm 0.28$	< 0.9
$\Lambda ar{\Lambda} \eta$	$16.0^{+4.2}_{-4.3}$	3.6	$3.0^{+3.6}_{-1.6}$	0.0	7.38	$-9.8^{+12.5}_{-26.9} \pm 3.3$	16.2	0.1674	9.9	$-1.60^{+2.06}_{-4.43} \pm 0.57$	< 3.0
$\Sigma^+ \bar{\Sigma}^-$	$8.5^{+3.0}_{-3.2}$	0.2	$3.3^{+4.3}_{-1.7}$	0.1	4.92	$-7.5^{+8.9}_{-21.4} \pm 1.5$	11.0	0.1704	9.9	$-0.74^{+0.89}_{-2.14} \pm 0.17$	<1.3
$\Sigma^0 \bar{\Sigma}^0$	$4.0^{+3.2}_{-1.9}$	0.0	$0.0^{+2.2}_{-0.0}$	0.0	5.03	$4.0^{+3.2}_{-11.2} \pm 0.5$	8.9	0.1537	9.9	$0.28^{+0.23}_{-0.79} \pm 0.04$	< 0.7
Ħ-Ē+	$1.0^{+2.2}_{-0.8}$	0.0	$0.5^{+2.8}_{-1.4}$	0.0	5.61	$-1.8^{+8.2}_{-15.7} \pm 0.3$	12.5	0.0941	9.9	$-0.21^{+0.94}_{-1.81} \pm 0.04$	<1.6
三位之	$1.0^{+2.2}_{-0.8}$	0.0	$2.0^{+3.2}_{-1.2}$	0.0	5.36	$-9.7^{+6.8}_{-17.2} \pm 1.3$	7.0	0.0490	10.0	$-2.22^{+1.55}_{-3.93} \pm 0.37$	<1.8

First measurement!

$\psi(3770) \rightarrow \gamma \chi_{c1,2}$

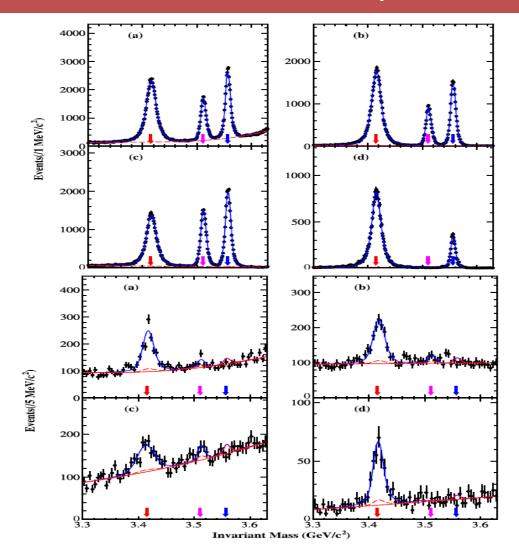
Reconstructed using the decay chain

$$\chi_{cJ} \rightarrow \gamma J/\psi, J/\psi \rightarrow \ell^+\ell^-(\ell=e,\mu)$$

Branching fractions are determined with

$$B(\psi(3770) \to \gamma \chi_{c1,2}) = \frac{N_{\psi(3770) \to \gamma \chi_{c1,2}}}{N_{\psi(3770)} B_{\chi_{c1,2} \to \gamma J/\psi} B_{J/\psi \to \ell^+ \ell^-} \varepsilon_{\psi(3770) \to \gamma \chi_{c1,2}}}$$

$\psi(3770) \rightarrow \gamma \chi_{c1,2}$


Results:

$$\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (2.48 \pm 0.15 \pm 0.23) \times 10^{-3} \Longrightarrow$$
 The most precise measurement! $\mathcal{B}(\psi(3770) \to \gamma \chi_{c2}) < 0.64 \times 10^{-3} \text{ (at 90% C.L.)}$

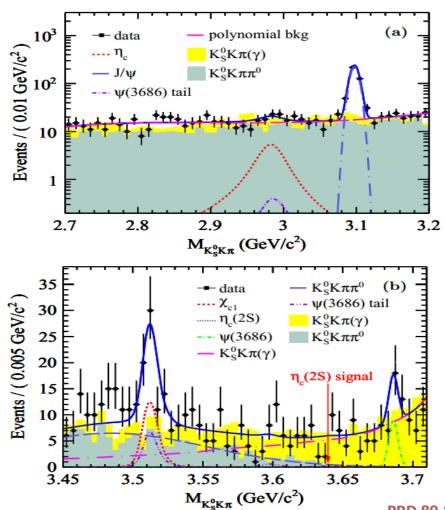
Experiment/theory	$\Gamma(\psi(3770) \to \gamma \chi_{cJ}) \text{ (keV)}$				
	J=1	J=2			
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4			
Ding-Qin-Chao [12]					
Nonrelativistic	95	3.6			
Relativistic	72	3.0			
Rosner S-D mixing [13]					
$\phi = 12^{\circ} [13]$	73 ± 9	24 ± 4			
$\phi = (10.6 \pm 1.3)^{\circ} [32]$	79 ± 6	21 ± 3			
$\phi = 0^{\circ} \text{ (pure } 1^{3}D_{1} \text{ state) [32]}$	133	4.8			
Eichten-Lane-Quigg [14]					
Nonrelativistic	183	3.2			
With coupled-channel corr.	59	3.9			
Barnes-Godfrey-Swanson [15]					
Nonrelativistic	125	4.9			
Relativistic	77	3.3			

Precision measurement of partial width of $\psi(3770) \rightarrow \gamma \chi_{c1,2}$ are critical to test theoretical models!

$|\psi(3770)\rightarrow\gamma\chi_{c0}|$

- Reconstructed via $\chi_{c0} \rightarrow 2(\pi^+\pi^-), K^+K^-\pi^+\pi^-, 3(\pi^+\pi^-), K^+K^-$
- Taking relative strength with respect to $\psi(3686)$ radiative E1 transition to avoid large uncertainties in χ_{cJ} decay branching fractions.
- The ratio of the branching fraction for $\psi(3770) \rightarrow \gamma \chi_{cJ}$ and $\psi(3686) \rightarrow \gamma \chi_{cJ}$ is determined channel by channel.

$$R_{cJ} = \frac{\mathcal{B}[\psi(3770) \to \gamma \chi_{cJ}]}{\mathcal{B}[\psi(3686) \to \gamma \chi_{cJ}]} = \frac{N_{\psi(3770)} \cdot N_{\psi(3686)}^{\text{tot}} \cdot \epsilon_{\psi(3686)}}{N_{\psi(3686)} \cdot N_{\psi(3770)}^{\text{tot}} \cdot \epsilon_{\psi(3770)}}$$


$\psi(3770) \rightarrow \gamma \chi_{c0}$

• Branching fraction for $\psi(3770) \rightarrow \gamma \chi_{c0}$:

$$B(\psi(3770) \rightarrow \gamma \chi_{cJ}) = R_{cJ} \times \underline{B(\psi(3686) \rightarrow \gamma \chi_{cJ})} \longrightarrow \text{Quoted from PDG}$$

Experiments	J=0	J = 1	
$\mathcal{B}^{\text{BESIII}}(\times 10^{-3})$	$6.88 \pm 0.28 \pm 0.67$	$1.94 \pm 0.42 \pm 0.64$	
$\mathcal{B}^{\text{BESIII}}(\times 10^{-3})$ [10]	-	$2.48 \pm 0.15 \pm 0.23$	
LBESIII	$187 \pm 8 \pm 19$	53 ± 12 ± 18	
Γ^{BESIII} [10]	-	$67.5 \pm 4.1 \pm 6.7$	
Γ ^{CLEO} [7,8]	172 ± 30	70 ± 17	
Γ ^{CLEO} corrected	192 ± 24	72 ± 16	The most precise
Theories			measurement!
Rosner [2] (non-relativistic)	523 ± 12	73 ± 9	
Ding-Qing-Chao [3]			
non-relativistic	312	95	
relativistic	199	72	
Eichten-Lane-Quigg [4]			
non-relativistic	254	183	
with coupled channels corrections	225	59	
Barnes-Godfrey-Swanson [5]			
non-relativistic	403	125	
relativistic	213	77	
NRCQM [6]	218	70	

$\psi(3770) \rightarrow \gamma \eta_c$ and $\gamma \eta_c(2S)$

- The processes of ψ(3770) → γη_c
 and γη_c(2S) are supposed to be
 highly suppressed. If the ψ(3770)
 is a pure D-wave state, the M1
 transition is forbidden. However,
 higher multipoles beyond the
 leading one could contribute.
- Reconstructed via

$$\eta_c(\eta_c(2S)) \to K_S^0 K^{\pm} \pi^{\mp}$$

$\psi(3770) \rightarrow \gamma \eta_c$ and $\gamma \eta_c(2S)$

• No significant excess of signal events above background is observed. We set limits at a 90% confidence level.

$$\mathcal{B}(\psi(3770) \to \gamma \eta_c(\eta_c(2S)) \to \gamma K_S^0 K^{\pm} \pi^{\mp})$$

$$< \frac{N_{\rm up}/(1 - \sigma_{\rm syst})}{\epsilon \cdot \mathcal{L} \cdot \sigma_{\psi(3770)}^0 \cdot (1 + \delta) \cdot \mathcal{B}(K_S^0 \to \pi^+ \pi^-)}$$

Quantity	η_c	$\eta_c(2S)$	X c1
$N_{ m obs}$	29.3 ± 18.2	0.4 ± 8.5	34.9 ± 9.8
$N_{ m up}$	56.8	16.1	
€ (%)	27.87	25.24	28.46
$\mathcal{B}(\psi(3770) \to \gamma X \to \gamma K_S^0 K^{\pm} \pi^{\mp}) \ (\times 10^{-6})$	< 16	< 5.6	$8.51 \pm 2.39 \pm 1.42$
$\mathcal{B}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$	< 0.68	< 2.0	$2.33 \pm 0.65 \pm 0.43$
$\mathcal{B}_{\text{CLEO}}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$			$2.9\pm0.5\pm0.4$
$\Gamma(\psi(3770) \to \gamma X) \text{ (keV)}$	< 19	< 55	
Γ_{IML} (keV)	$17.14^{+22.93}_{-12.03}$	$1.82^{+1.95}_{-1.19}$	
Γ_{LQCD} (keV)	10 ± 11		

Summary

- By analyzing the data samples collected using BESIII detector, we searched for the non-DD decays of the $\psi(3770)$;
 - No significant baryonic decays are observed;
 - − The measurement of B($\psi(3770)$ → $\gamma\chi_{c0}$) and B($\psi(3770)$ → $\gamma\chi_{c1}$) are improved;
 - No significant decays of $\psi(3770) \rightarrow \gamma \eta_c(\eta_c(2S))$ are observed.
- More results on non-DD decays of the $\psi(3770)$ are coming soon!

Thank you!