Studies of charmonium decays at BESIII

Elisa Fioravanti

INFN Ferrara
On behalf of the BESIII Collaboration

VIII International Workshop on Charm Physics
September 5 - 9, 2016 Bologna, Italy
Outline

- The BESIII experiment and detector
- The BESIII physics program
- Measurement of the leptonic decay width of J/ψ using initial state radiation
 PLB 761, 98-103 (2016)
- Observation of h_c radiative decay $h'_c \rightarrow h_c\gamma$ and evidence for $h_c \rightarrow \gamma\eta$
 PRL 116, 251802 (2016)
- Study of χ_{cJ} decaying into $\phi K^*(892)\bar{K}$
 PRD 91, 112008 (2015)
- Conclusions
Studies of charmonium decays at BESIII

2004: BEPCII/BESIII Construction
Double ring
Beam energy: 1-2.3 GeV
Designed Luminosity $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
2008: test run
2009-today: BESIII physics run
The BESIII detector

Studies of charmonium decays at BESIII
BESIII physics program

- Light hadron Physics
 - Meson and baryon spectroscopy
 - Multiquark states
 - Threshold effects
 - Glueballs and hybrids
 - Two-photon physics
 - Form factors
- QCD and τ
 - Precision R measurement
 - τ decay
- Charmonium physics
 - Precision spectroscopy
 - Transitions and decays
- XYZ meson physics
 - $Y(4260), Y(4360)$ properties
 - $Z_c(3900)^+, \ldots$
- Charm physics
 - Semi-leptonic form factors
 - Decay constants f_D and f_{D_s}
 - CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
 - D^0-\bar{D}^0 mixing, CPV
 - Strong phases
- Precision mass measurements
 - τ mass
 - D, D^* mass
BESIII physics program

- Light hadron Physics
 - Meson and baryon spectroscopy
 - Multiquark states
 - Threshold effects
 - Glueballs and hybrids
 - Two-photon physics
 - Form factors

- QCD and τ
 - Precision R measurement
 - τ decay

- Charmonium physics
 - Precision spectroscopy
 - Transitions and decays

- XYZ meson physics
 - $Y(4260), Y(4360)$ properties
 - $Z_c(3900)^+, \ldots$

- Charm physics
 - Semi-leptonic form factors
 - Decay constants f_D and f_{D_s}
 - CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
 - D^0-\bar{D}^0 mixing, CPV
 - Strong phases

- Precision mass measurements
 - τ mass
 - D, D^* mass
Data samples

<table>
<thead>
<tr>
<th>Data sample</th>
<th>E_{cm}</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3×10^9</td>
<td>J/ψ at 3.097 GeV</td>
<td>2009 (0.225$\times 10^9$) + 2012</td>
</tr>
<tr>
<td>0.5×10^9</td>
<td>$\psi(2S)$ at 3.686 GeV</td>
<td>2009 (0.106$\times 10^9$) + 2012</td>
</tr>
<tr>
<td>2.92 fb$^{-1}$</td>
<td>$\psi(3770)$ at 3.773 GeV</td>
<td>2010+2011</td>
</tr>
<tr>
<td>0.5 fb$^{-1}$</td>
<td>$\psi(4040)$ at 4.009 GeV</td>
<td>2011</td>
</tr>
<tr>
<td>0.024 fb$^{-1}$</td>
<td>τ mass scan at around 3.554 GeV</td>
<td>2011</td>
</tr>
<tr>
<td>1.9 fb$^{-1}$</td>
<td>Y(4260) at 4.23 GeV and 4.26 GeV</td>
<td>2013</td>
</tr>
<tr>
<td>0.5 fb$^{-1}$</td>
<td>Y(4360) at 4.36 GeV</td>
<td>2013</td>
</tr>
<tr>
<td>0.5 fb$^{-1}$</td>
<td>Y(4260) and Y(4360) scan</td>
<td>2013</td>
</tr>
<tr>
<td>0.8 fb$^{-1}$</td>
<td>R scan, 104 energy points between 3.85 and 4.59 GeV</td>
<td>2014</td>
</tr>
<tr>
<td>1.0 fb$^{-1}$</td>
<td>at 4.42 GeV</td>
<td>2014</td>
</tr>
<tr>
<td>0.1 fb$^{-1}$</td>
<td>at 4.47 GeV and 4.53 GeV for line shape</td>
<td>2014</td>
</tr>
<tr>
<td>0.04 fb$^{-1}$</td>
<td>at 4.575 GeV (around the threshold of Lambda Charm)</td>
<td>2014</td>
</tr>
<tr>
<td>0.5 fb$^{-1}$</td>
<td>at 4.60 GeV</td>
<td>2014</td>
</tr>
</tbody>
</table>
Measurement of the leptonic decay width of J/ψ using initial state radiation

PLB 761, 98-103 (2016)
The electronic width of the J/ψ, Γ_{ee} has been measured by BABAR (PRD69,011103R(2004)) and CLEO-c (PRD73,051103R(2006)).

Also KEDR experiment measured the electronic width with improved precision using a different method (PLB685,134-140(2010))

BESIII studied the process $e^+e^- \rightarrow \mu^+\mu^-\gamma$ using the ISR method, analyzing 2.93 fb$^{-1}$ of data taken at $\sqrt{s} = 3.773$ GeV.

The cross section $\sigma_{J/\psi\gamma} = \sigma(e^+e^- \rightarrow J/\psi\gamma \rightarrow \mu^+\mu^-\gamma)$ is proportional to $\Gamma_{ee} \times B_{\mu\mu}$, where $B_{\mu\mu} = B(J/\psi \rightarrow \mu^+\mu^-)$.

With the precise measurement of $B_{\mu\mu}$ from BESIII, we have the opportunity to obtain Γ_{ee} with high precision.
Results

Our measurement of $\Gamma_{ee} \times B_{\mu\mu}$ is consistent with results from BABAR, CLEO-c and KEDR. The measured value for Γ_{ee} is more precise.
Observation of h_c radiative decay $h'_c \rightarrow h_c \gamma$ and evidence for $h_c \rightarrow \gamma \eta$

PRL 116, 251802 (2016)
Many unexpected states have been reported above the $D\bar{D}$ threshold, seemingly too many with $J^{PC} = 1^{--}$. Several exotic hypotheses as to their nature: tetraquarks, hadronic molecules, hybrids, glueballs, hadro-quarkonia.

Below the $D\bar{D}$ threshold, all expected states have been observed, with properties in good agreement with theory. However, knowledge is still sparse on the P-wave spin-singlet state, $h_c(1P_1)$.
Only a few decay modes of h_c have been observed, $h_c \rightarrow \gamma \eta_c$ (BR\(\sim\)50%) and $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$ (BR\(\sim\)2%).

Searches for the new h_c decay modes are useful for providing constraints to theoretical models in the charmonium region.

The ratio of the branching fraction $\mathcal{B}(h_c \rightarrow \gamma \eta) / \mathcal{B}(h_c \rightarrow \gamma \eta')$ can also be used to study the $\eta - \eta'$ mixing angle, which is important to test SU(3)-flavor symmetries in QCD.

We report the observation of the h_c radiative decay $h_c \rightarrow \gamma \eta'(\eta)$, where h_c is produced in the decay $\psi' \rightarrow \pi^0 h_c$.

The $h_c \rightarrow \gamma \eta'$ is reconstructed by using $\eta' \rightarrow \pi^+\pi^-\eta$ and $\eta' \rightarrow \gamma\pi^+\pi^-$ with $\eta \rightarrow \gamma\gamma$.

The $h_c \rightarrow \gamma \eta$ is reconstructed from decays $\eta \rightarrow \gamma\gamma$ and $\eta \rightarrow \pi^+\pi^-\pi^0$ with $\pi^0 \rightarrow \gamma\gamma$.

The analyses are based on a data sample of $4.48 \times 10^8 \ \psi'$ events.
Studies of charmonium decays at BESIII

Results

PRL 116, 251802 (2016)

<table>
<thead>
<tr>
<th>Mode</th>
<th>$N_{h_c \to \gamma' (\eta)}$</th>
<th>$B[h_c \to \gamma' (\eta)]$</th>
<th>Significance</th>
<th>[\frac{B(h_c \to \gamma)}{B(h_c \to \gamma')}\text{%}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_c \to \gamma'$</td>
<td>$44.3 \pm 7.8\text{(stat)}$</td>
<td>$[1.52 \pm 0.27\text{(stat)} \pm 0.29\text{(sys)}] \times 10^{-3}$</td>
<td>8.4σ</td>
<td>$30.7 \pm 11.3\text{(stat)} \pm 8.7\text{(sys)}$</td>
</tr>
<tr>
<td>$h_c \to \gamma$</td>
<td>$18.1 \pm 5.8\text{(stat)}$</td>
<td>$[4.7 \pm 1.5\text{(stat)} \pm 1.4\text{(sys.)}] \times 10^{-4}$</td>
<td>4.0σ</td>
<td></td>
</tr>
</tbody>
</table>

Elisa Fioravanti

14
Study of χ_{cJ} decaying into $\phi K^*(892)\bar{K}$

PRD 91, 112008 (2015)
Unlike the \(J/\psi \) and the \(\psi' \), the \(P \)-wave charmonia states \(\chi_{cJ} \) are not directly produced in \(e^+e^- \) collisions and, thus, are less well understood.

Obtaining more experimental data on exclusive decays of the \(\chi_{cJ} \) states is important for a better understanding of their nature and mechanisms, as well as for testing QCD-base calculation.

Since the \(\chi_{cJ} \) states are produced copious in the E1 radiative transition of \(\psi' \), with branching fractions around 9\%, the large \(\psi' \) data sample taken at BESIII provides a unique opportunity for detailed studies of \(\chi_{cJ} \) exclusive decays.

We report the first measurement of the decay \(\chi_{cJ} \rightarrow \phi K_S^0 K^{\pm} \pi^{\mp} \) and \(\chi_{cJ} \rightarrow \phi K^+ K^- \pi^0 \) in the electric dipole E1 radiative transition \(\psi' \rightarrow \gamma \chi_{cJ} \), using \(1.06 \times 10^8 \) \(\psi' \). The \(\phi \) is reconstructed via \(K^+ K^- \).
- Significant χ_{cJ} signals are observed.
- The dominant processes are the $\chi_{cJ} \rightarrow \phi K^*(892) \bar{K}$ three-body decays.
Branching fractions measurement

Branching fractions measured in $\phi K \bar{K} \pi$ final states:

<table>
<thead>
<tr>
<th>Decay Modes</th>
<th>$\phi K^+ K^- \pi^0$ ($\times 10^{-3}$)</th>
<th>$\phi K^+ K^- \pi$ ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_{c0}</td>
<td>$\phi K^*(892)^\pm K^\mp$</td>
<td>1.65 ± 0.21 (stat) ± 0.22 (sys)</td>
</tr>
<tr>
<td></td>
<td>$\phi K^*(892)^0 K^0 + c.c.$</td>
<td>2.03 ± 0.21 (stat) ± 0.28 (sys)</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>$\phi K^*(892)^\pm K^\mp$</td>
<td>1.76 ± 0.21 (stat) ± 0.26 (sys)</td>
</tr>
<tr>
<td></td>
<td>$\phi K^*(892)^0 K^0 + c.c.$</td>
<td>1.51 ± 0.19 (stat) ± 0.22 (sys)</td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>$\phi K^*(892)^\pm K^\mp$</td>
<td>2.56 ± 0.23 (stat) ± 0.35 (sys)</td>
</tr>
<tr>
<td></td>
<td>$\phi K^*(892)^0 K^0 + c.c.$</td>
<td>2.27 ± 0.22 (stat) ± 0.32 (sys)</td>
</tr>
</tbody>
</table>

$K^*(892)^\pm$ tagged events

$K^*(892)^0$ tagged events
The $K\bar{K}\pi$ invariant mass and $h_1(1380)$ state

- The $K\bar{K}\pi$ invariant mass distributions are studied in order to identify any intermediate states.
- A threshold enhancement, which can not be described with the phase space, is observed in both χ_{c1} and χ_{c2} signal regions and it has been identify as the $h_1(1380)$.
- In the χ_{c0} decay, a structure, the $\phi(1680)$ is observed. There is also a possible $\phi(1850)$ contribution.
The $K\bar{K}\pi$ invariant mass and $h_1(1380)$ state

- A simultaneous fit is performed to the invariant mass distributions of $K\bar{K}\pi$ for the candidate events in the $\chi_{c1,2}$ signal regions.
- The $h_1(1380)$ is observed with significance of 10σ. This is the first direct observation of this state in its decay to $K^*(892)\bar{K}$
- $m[h_1(1380)]=1412\pm4\pm8$ MeV/c^2; $\Gamma[h_1(1830)]=84\pm12\pm40$ MeV
- Evidence is also found for the decays $\chi_{cJ} \rightarrow \phi\phi(1680)$ and $\chi_{cJ} \rightarrow \phi\phi(1850)$ but with significances less than 5σ.
- More data and advanced analysis techniques are needed.
Conclusion

- BESIII is successfully operating since 2008, and continues to take data.
- It is an excellent laboratory to study charmonium spectroscopy:
 - High statistics
 - Low background
- Many interesting results have been obtained, only few of them are covered in this talk.
- Future:
 - More data will be collected
 - More detailed studies will be done

THANKS FOR YOUR ATTENTION!