Hybrid and Exotic Spectroscopy with Charm Quarks in Lattice QCD

Gavin Cheung
for the Hadron Spectrum Collaboration

DAMTP, University of Cambridge

7 September 2016
Plethora of unexpected charmonium-like (X, Y, Z) states discovered experimentally.

- Masses and widths of some D_s states significantly lower than those expected from quark model.
- Tetraquarks? Molecules? Cusps? Hybrids?
- First principles calculations using lattice QCD to understand these states.

S. Olsen, arxiv:1511.01589
Plethora of unexpected charmonium-like \((X, Y, Z)\) states discovered experimentally.

Masses and widths of some \(D_s\) states significantly lower than those expected from quark model.
Introduction

▶ Plethora of unexpected charmonium-like (X, Y, Z) states discovered experimentally.
▶ Masses and widths of some D_s states significantly lower than those expected from quark model.
▶ Tetraquarks? Molecules? Cusps? Hybrids?

S. Olsen, arxiv:1511.01589
Plethora of unexpected charmonium-like \((X, Y, Z)\) states discovered experimentally.

Masses and widths of some \(D_s\) states significantly lower than those expected from quark model.

Tetraquarks? Molecules? Cusps? Hybrids?

First principles calculations using lattice QCD to understand these states.
Calculation Details

- Determine spectrum of hidden and open charmed states including excitations and states with intrinsic gluonic component on the lattice at pion mass $M_\pi \sim 240$ MeV.

Calculation Details

- Determine spectrum of hidden and open charmed states including excitations and states with intrinsic gluonic component on the lattice at pion mass $M_\pi \sim 240$ MeV.

- Compare with previous study at $M_\pi \sim 400$ MeV.

 [arXiv:1204.5425] [arXiv:1301.7670]
Calculation Details

- Determine spectrum of hidden and open charmed states including excitations and states with intrinsic gluonic component on the lattice at pion mass $M_\pi \sim 240$ MeV.

- Compare with previous study at $M_\pi \sim 400$ MeV.

 [arXiv:1204.5425] [arXiv:1301.7670]

<table>
<thead>
<tr>
<th>Lattice Volume</th>
<th>M_π (MeV)</th>
<th>N_{cfgs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24^3 \times 128$</td>
<td>391</td>
<td>553</td>
</tr>
<tr>
<td>$32^3 \times 256$</td>
<td>236</td>
<td>484</td>
</tr>
</tbody>
</table>
Calculation Details

- Determine spectrum of hidden and open charmed states including excitations and states with intrinsic gluonic component on the lattice at pion mass $M_\pi \sim \SI{240}{\text{MeV}}$.

- Compare with previous study at $M_\pi \sim \SI{400}{\text{MeV}}$.

 [arXiv:1204.5425] [arXiv:1301.7670]

<table>
<thead>
<tr>
<th>Lattice Volume</th>
<th>M_π (MeV)</th>
<th>N_{cfgs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24^3 \times 128$</td>
<td>391</td>
<td>553</td>
</tr>
<tr>
<td>$32^3 \times 256$</td>
<td>236</td>
<td>484</td>
</tr>
</tbody>
</table>

- Finite volume errors $\sim e^{-M_\pi L}$.
Extracting Observables

- Construct a creation operator $O_i^\dagger(t)$ that has the same quantum numbers as the states we’re interested in. E.g. for the $\eta_c(0^{-+})$, $O^\dagger = \bar{c}\gamma^5 c$.

Computing the two-point correlation function,

$$C_{ij}(t) = \langle 0 | O_i(t) O_{\dagger j}(0) | 0 \rangle = \sum_n \langle 0 | e^{iHt} O_i(0) e^{-iHt} | n \rangle \langle n | \frac{1}{2}E_n \quad O_{\dagger j}(0) | 0 \rangle.$$

The spectrum is contained in $C_{ij}(t)$. In practice, we use many $O_i^\dagger \sim \bar{c}\Gamma \rightarrow D \cdots \rightarrow D c$.

4 / 15
Extracting Observables

- Construct a creation operator $O_i^\dagger(t)$ that has the same quantum numbers as the states we’re interested in. E.g. for the $\eta_c(0^{-+})$, $O^\dagger = \bar{c}\gamma^5 c$.

- Computing the two-point correlation function,

$$C_{ij}(t) = \langle 0| O_i(t)O_j^\dagger(0)|0\rangle$$

$$= \sum_n \langle 0| e^{Ht} O_i(0)e^{-Ht} \frac{|n\rangle\langle n|}{2E_n} O_j^\dagger(0)|0\rangle$$

$$= \sum_n \frac{1}{2E_n} e^{-E_nt} \langle 0| O_i|n\rangle \langle n| O_j^\dagger|0\rangle.$$
Construct a creation operator $O_i^\dagger(t)$ that has the same quantum numbers as the states we’re interested in. E.g. for the $\eta_c(0^{-+})$, $O^\dagger = \bar{c}\gamma^5 c$.

Computing the two-point correlation function,

$$C_{ij}(t) = \langle 0 | O_i(t) O_j^\dagger(0) | 0 \rangle$$

$$= \sum_n \langle 0 | e^{Ht} O_i(0) e^{-Ht} \frac{|n\rangle\langle n|}{2E_n} O_j^\dagger(0) | 0 \rangle$$

$$= \sum_n \frac{1}{2E_n} e^{-E_nt} \langle 0 | O_i | n \rangle \langle n | O_j^\dagger | 0 \rangle.$$
Charmonium Spectrum at $M_\pi \sim 240$ MeV
Charmonium Spectrum at $M_\pi \sim 240$ MeV

S-wave
Charmonium Spectrum at $M_\pi \sim 240$ MeV

S-wave

P-Wave

$M - M_{\eta_c}$ (MeV)

1++ 0++ 1-- 2-- 2++ 2++ 3-- 4-- 4++ 0-- 1-- 1++ 2++ 3-- 3++ 4++
Charmonium Spectrum at $M_\pi \sim 240$ MeV
Charmonium Spectrum at $M_\pi \sim 240 \text{ MeV}$
Hybrid Mesons

Consistent with adding an effective gluonic degree of freedom $J^{PC} = 1^{+-}$ to the quark model.
Hybrid Mesons

Consistent with adding an effective gluonic degree of freedom $J^{PC} = 1^{+-}$ to the quark model.

$q\bar{q} \ L = 0$

$$\{0^{--}; 1^{--}\} \rightarrow \{1^{--}; 0^{+-}, 1^{+-}, 2^{+-}\}$$
Hybrid Mesons

Consistent with adding an effective gluonic degree of freedom $J^{PC} = 1^{+-}$ to the quark model.

$q\bar{q} \ L = 0$

$$\{0^{-+}; 1^{--}\} \rightarrow \{1^{--}; 0^{-+}, 1^{-+}, 2^{-+}\}$$

$q\bar{q} \ L = 1$

$$\{1^{+-}; 0^{++}, 1^{++}, 2^{++}\} \rightarrow \{0^{++}, 1^{++}, 2^{++}; 0^{+-}, 1^{--}(3), 2^{+-}(2), 3^{+-}\}$$
D_s Spectrum at $M_\pi \sim 240$ MeV

- S-Wave
- P-Wave
- F-Wave
- D-Wave
- G-Wave
D Spectrum at $M_\pi \sim 240$ MeV
Charmonium Comparison

![Graph showing the comparison of Charmonium states. The graph plots the mass difference $M - M_{\eta_c}$ (MeV) against various quantum numbers. Different colors and markers represent different states such as $D\bar{D}$, $D^0\bar{D}$, and $\eta_c\pi\pi$. The mass resolution is indicated for two values: 240 and 400 MeV.](image-url)
D_s Comparison

\[M - M_{\eta_c}/2 \text{ (MeV)} \]

- M_{π} / MeV
 - 240
 - 400

- States:
 - 0^-
 - 1^-
 - 2^-
 - 3^-
 - 4^-
 - 0^+
 - 1^+
 - 2^+
 - 3^+
 - 4^+

- DK
D Comparison

$M - M_{\eta_c}/2$ (MeV)

M_π / MeV

240 400

D^{*+}

D_{0^-}
Summary

- At $M_{\pi} \sim 240$ MeV, we find states that are consistent with the $n^{2S+1}L_J$ pattern.

- Additionally, we also identify states that are consistent with a quark-antiquark combination coupled to a 1^{-+} gluonic excitation.

- Comparing with previous results at $M_{\pi} \sim 400$ MeV, we find minor differences and conclude that the overall qualitative structure is the same.

- This work has set the foundation for future scattering calculations.
At $M_\pi \sim 240$ MeV, we find states that are consistent with the $n^{2S+1}L_J$ pattern.

Additionally, we also identify states that are consistent with a quark-antiquark combination coupled to a 1^{+-} gluonic excitation.

Comparing with previous results at $M_\pi \sim 400$ MeV, we find minor differences and conclude that the overall qualitative structure is the same.

This work has set the foundation for future scattering calculations.
Summary

- At $M_\pi \sim 240$ MeV, we find states that are consistent with the $n^{2S+1}L_J$ pattern.

- Additionally, we also identify states that are consistent with a quark-antiquark combination coupled to a 1^{+-} gluonic excitation.

- Comparing with previous results at $M_\pi \sim 400$ MeV, we find minor differences and conclude that the overall qualitative structure is the same.
Summary

- At $M_\pi \sim 240$ MeV, we find states that are consistent with the $n^{2S+1}L_J$ pattern.
- Additionally, we also identify states that are consistent with a quark-antiquark combination coupled to a 1^{+-} gluonic excitation.
- Comparing with previous results at $M_\pi \sim 400$ MeV, we find minor differences and conclude that the overall qualitative structure is the same.
- This work has set the foundation for future scattering calculations.
Next Steps?

- Unstable nature of states above threshold not accounted for. Finite Euclidean lattice means that S-matrix not directly accessible.
Next Steps?

- Unstable nature of states above threshold not accounted for. Finite Euclidean lattice means that S-matrix not directly accessible.

- Need to include multibody operators. Example of spectrum using meson-meson and tetraquark operators in $c\bar{c} 1^{++}$ isospin-1 channel relevant for charged Z states.
Lüscher formalism relates discrete finite volume spectra to infinite volume S-matrix.
Lüscher formalism relates discrete finite volume spectra to infinite volume S-matrix.

Recently performed coupled channel $D\pi, D\eta, D_s\bar{K}$ scattering analysis on $M_\pi = 391$ MeV lattices.

Many interesting channels, $DK, D\bar{D}, D\bar{D}^*, \ldots$ to understand $D_{s0}^*(2317), X(3872), \ldots$ etc.
Lüscher formalism relates discrete finite volume spectra to infinite volume S-matrix.

Recently performed coupled channel $D\pi$, $D\eta$, $D_s\bar{K}$ scattering analysis on $M_\pi = 391$ MeV lattices.

Many interesting channels, DK, $D\bar{D}$, $D\bar{D}^*$, ... to understand $D_{s0}^*(2317)$, $X(3872)$, etc.

Radiative transitions between charmonium states can also be calculated on the lattice and are underway.
Lüscher formalism relates discrete finite volume spectra to infinite volume S-matrix.

Recently performed coupled channel $D\pi, D\eta, Ds\bar{K}$ scattering analysis on $M_\pi = 391$ MeV lattices.

Many interesting channels, $DK, D\bar{D}, D\bar{D}^*$, ... to understand $Ds_0^*(2317), X(3872)$, etc.

Radiative transitions between charmonium states can also be calculated on the lattice and are underway.

Lattice QCD will play a crucial role in understanding current and future exotic states.
Thank you for listening!
The Variational Method

\[C_{ij}(t) = \langle O_i(t)O_j^\dagger(0) \rangle = \sum_n \frac{Z_i^n Z_j^{n\ast}}{2E_n} e^{-E_n t} \]

Solve the generalised eigenvalue problem

\[C_{ij}(t)v^n_j = \lambda^n(t)C_{ij}(t_0)v^n_j. \]

Then the eigenvalue is related to the mass by

\[\lambda^n(t) = e^{-(t-t_0)E_n} + O(e^{-(t-t_0)E_m}) \]

and the overlap is related to the eigenvector by

\[Z_i^n = \sqrt{2E_n}e^{E_nt_0/2}v_j^{n\ast}C_{ji}(t_0). \]
Constructing the Charmonium Operator

1. Construct a fermion bilinear with a gamma matrix Γ and a number of derivatives D all with the same quantum numbers.

$$O(t) = \bar{c}\Gamma D_1 D_2 \ldots c.$$

2. Couple to a continuum angular momentum irrep using Clebsch-Gordan coefficients. For example, for one gamma matrix and one derivative,

$$O^{J, M}(t) = \sum_{m_1, m_2} \langle J_1, m_1; J_2, m_2 | J, M \rangle \bar{c}\Gamma_{m_1} D_{m_2} c.$$

3. Project onto a lattice irrep using ‘subduction’ coefficients.

$$O_{\Lambda, \lambda}^{[J]}(t) = \sum_M S_{\Lambda, \lambda}^{J, M} O^{J, M}(t).$$
Spin Identification

Overlaps for first 5 states in T_{2}^{++}.
$J=2$ (green), $J=3$ (blue), $J=4$ (yellow)
Hybrid Identification

Look for high overlap onto operators proportional to \([D_1, D_2]\).

Overlaps for first 4 states in 0^{−+}.

J=0 (black), Hybrid J=0 (grey), J=4 (yellow)