- Mixing and indirect CP violation using 2-body decays at LHCb
Pietro Marino on behalf of LHCb collaboration

Why is charm charming?

- Unique and powerful probe of BSM flavour effects.
- Charm is an up-type quark:
* complementary to B and K meson system;
- best bounds on a generic new physics model after the kaon mixing.
- Huge data samples,
+ LHCb has the opportunity to exploit fully the charm sector as a probe for new physics.
- SM predictions are difficult on D-meson sector:
$\rightarrow \mathrm{D}^{0}$ mass $\approx 1864 \mathrm{MeV} / \mathrm{c}^{2}$
* QCD perturbative only at energies > 1 GeV

Charm mixing and $C P$ violation

- D^{0} mixing is established.
- CP violation yet unobserved!
\star Small value expected from SM $\mathscr{O}\left(\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{cb}}{ }^{*} / \mathrm{V}_{\mathrm{us}} \mathrm{V}_{\mathrm{cs}}{ }^{*}\right) \sim$ O(10^{-3})
- Present sensitivity close to possible BSM contribution (yields $\sim \mathcal{O}\left(10^{6}\right)$)

Decay CPV

$$
\left|D^{0} \rightarrow-f\right|^{2} \neq\left|\bar{D}^{0} \rightarrow \longrightarrow-\bar{f}\right|^{2} \leftrightarrow\left|\frac{A_{f}}{\bar{A}_{\bar{f}}}\right| \neq 1
$$

Mixing CPV
[HFAG, arXiv:1412.7515]
-LHCb
Weight: 5600 t
Height: 10 m
Long: 21 m

VErtex LOcator

$\sim(15+29 / \mathrm{PT}) \mathrm{um}$ IP resolution

Height: 10m
Long: 21 m

Calorimeters
Muon system

Mixing with $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$ decays

WS mixing with double tagged D^{0}

- Measure time-dependent ratio

$$
\begin{aligned}
& R(t)^{ \pm}=\frac{\mathrm{WS}(t)^{ \pm}}{\mathrm{RS}(t)^{ \pm}} \approx R_{D}^{ \pm}+\sqrt{R_{D}^{ \pm}} y^{\prime \pm \frac{t}{\tau}}+\frac{\left(x^{\prime \pm}\right)^{2}+\left(y^{\prime \pm}\right)^{2}}{4}\left(\frac{t}{\tau}\right)^{2} \\
& x^{\prime}=x \cos \delta+y \sin \delta, y^{\prime}=-x \sin \delta+y \cos \delta
\end{aligned}
$$

- Complements previous measurement using prompt $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi_{\mathrm{s}}{ }^{+}$
[PRL 11, 251801 (2013)]
- Candidates in both datasets are vetoed.

$$
R(t)^{+}=\frac{\bar{D}^{0}{ }_{(\mathrm{CF})}}{D^{0}(\mathrm{CF})}
$$

- Very clean.

π^{+}

DT mixing results

- Mixing only: $\mathrm{R}^{+}{ }^{\mathrm{D}}=\mathrm{R}^{-} \mathrm{D}$, $x^{\prime+}=x^{\prime-}$ and $y^{\prime+}=y^{\prime-}$
- No direct CPV: $\mathrm{R}^{+}{ }^{\circ}=\mathrm{R}^{-}{ }^{D}$
- All CPV allowed: all +/- free
- Kா detection asymmetry accounted for in the fit.
- Consistent with mixing only fit.

Parameter	
No CPV	
$R_{D}\left[10^{-3}\right]$	$3.48 \pm 0.10 \pm 0.01$
$x^{\prime 2}\left[10^{-4}\right]$	$0.28 \pm 3.10 \pm 0.11$
$y^{\prime}\left[10^{-3}\right]$	$4.60 \pm 3.70 \pm 0.18$
$\chi^{2} /$ NDF	$6.293 / 7$
No Direct CPV	
$R_{D}\left[10^{-3}\right]$	$3.48 \pm 0.10 \pm 0.01$
$x^{\prime 2+}\left[10^{-4}\right]$	$1.94 \pm 3.67 \pm 1.17$
$y^{\prime+}\left[10^{-3}\right]$	$2.79 \pm 4.27 \pm 0.98$
$x^{\prime 2-}\left[10^{-4}\right]$	$-1.53 \pm 4.04 \pm 1.68$
$y^{\prime-}\left[10^{-3}\right]$	$6.51 \pm 4.38 \pm 1.66$
$\chi^{2} / \mathrm{NDF}^{2}$	$5.589 / 5$
All CPV Allowed	
$R_{D}^{+}\left[10^{-3}\right]$	$3.38 \pm 0.15 \pm 0.06$
$x^{\prime 2+}\left[10^{-4}\right]$	$-0.19 \pm 4.46 \pm 0.32$
$y^{\prime+}\left[10^{-3}\right]$	$5.81 \pm 5.25 \pm 0.31$
$R_{D}^{-}\left[10^{-3}\right]$	$3.60 \pm 0.15 \pm 0.07$
$x^{\prime 2-}\left[10^{-4}\right]$	$0.79 \pm 4.31 \pm 0.38$
$y^{\prime-}\left[10^{-3}\right]$	$3.32 \pm 5.21 \pm 0.40$
$\chi^{2} /$ NDF	$4.473 / 4$

Dominant systematic uncertainties from combinatorial μ background, prompt veto, fit model and time-dependent asymmetry.

- Mixing only: $\mathrm{R}^{+}{ }^{\mathrm{D}}=\mathrm{R}^{-} \mathrm{D}$, $x^{\prime+}=x^{\prime-}$ and $y^{\prime+}=y^{\prime-}$
- No direct CPV: $R^{+}{ }_{D}=R^{-}{ }^{-}$
- All CPV allowed: all +/- free
- Kா detection asymmetry accounted for in the fit.
- Consistent with mixing only fit.
- 10-20\% of improvements in sensitivity when combining with prompt measurement.

Parameter	DT+prompt combination	Prompt alone
	No CPV	
$R_{D}\left[10^{-3}\right]$	3.533 ± 0.054	3.568 ± 0.067
$x^{\prime 2}\left[10^{-5}\right]$	3.6 ± 4.3	5.5 ± 4.9
$y^{\prime}\left[10^{-3}\right]$	5.23 ± 0.84	4.80 ± 0.94
$\chi^{2} /$ NDF	96.594/111	
	No Direct CPV	
$R_{D}\left[10^{-3}\right]$	3.533 ± 0.054	3.568 ± 0.067
$x^{\prime 2+}\left[10^{-5}\right]$	4.9 ± 5.0	6.4 ± 5.6
$y^{\prime+}\left[10^{-3}\right]$	5.14 ± 0.91	4.80 ± 1.08
$x^{\prime 2-}\left[10^{-5}\right]$	2.4 ± 5.0	4.6 ± 5.5
$y^{\prime-}\left[10^{-3}\right]$	5.32 ± 0.91	4.8 ± 1.08
$\chi^{2} /$ NDF	96.147/109	
	All CPV Allowed	
$R_{D}^{+}\left[10^{-3}\right]$	3.474 ± 0.081	3.545 ± 0.095
$x^{\prime 2+}\left[10^{-5}\right]$	1.1 ± 6.5	4.9 ± 7.0
$y^{\prime+}\left[10^{-3}\right]$	5.97 ± 1.25	5.10 ± 1.38
$R_{D}^{-}\left[10^{-3}\right]$	3.591 ± 0.081	3.591 ± 0.090
$x^{\prime 2-}\left[10^{-5}\right]$	6.1 ± 6.1	6.0 ± 6.8
$y^{\prime-}\left[10^{-3}\right]$	4.50 ± 1.21	4.50 ± 1.39
$\chi^{2} /$ NDF	94.960/108	

Dominant systematic

 uncertainties from combinatorial μ background, prompt veto, fit model and time-dependent asymmetry.

Indirect CP asymmetry in $D^{0} \rightarrow h^{+} h^{-}$decays

Ar observable

- Time-dependent CP asymmetry, at the first order in $\mathrm{t} / \tau_{\mathrm{D}}$,

$$
A_{C P}(t)=\frac{\Gamma\left(D^{0}(t) \rightarrow f\right)-\Gamma\left(\bar{D}^{0}(t) \rightarrow f\right)}{\Gamma\left(D^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{D}^{0}(t) \rightarrow f\right)} \approx a_{C P}^{\mathrm{dir}}+\frac{t}{\tau_{D}} a_{C P}^{\mathrm{ind}}
$$

- The indirect CP violation is equal to - A_{Γ}, defined as [Phys. Rev. D 75, 036008]

$$
A_{\Gamma}=\frac{\hat{\Gamma}\left(D^{0} \rightarrow f\right)-\hat{\Gamma}\left(\bar{D}^{0} \rightarrow f\right)}{\hat{\Gamma}\left(D^{0} \rightarrow f\right)+\hat{\Gamma}\left(\bar{D}^{0} \rightarrow f\right)}=\frac{1}{2}\left[\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi-\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) x \sin \phi\right]
$$

CPV in the mixing
CPV in the inference
$\hat{\Gamma}$ is the effective decay with, $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$

$$
\begin{gathered}
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \\
x \equiv \frac{m_{1}-m_{2}}{\Gamma}, \quad y \equiv \frac{\Gamma_{1}-\Gamma_{2}}{2 \Gamma} \\
\phi=\arg (q / p)
\end{gathered}
$$

A_{r} state-of-the-art

- Two measurement from LHCb
\uparrow semi-leptonic tagged D^{0} on the full Run I data sample of $3 \mathrm{fb}^{-1}$,
$\uparrow D^{*}$-tagged D^{0} with only Ifb^{-1}, the 20II data sample.
[HFAG, arXiv:1412.7515]
- D^{*}-tagged is already the world best measurement with only Ifb^{-1}.

A_{r} state-of-the-art

- Two measurement from LHCb
\uparrow semi-leptonic tagged D^{0} on the full Run I data sample of $3 \mathrm{fb}^{-1}$,
$\uparrow D^{*}$-tagged D^{0} with only Ifb^{-1}, the 20II data sample.
[HFAG, arXiv:1412.7515]
- D^{*}-tagged is already the world best measurement with only Ifb^{-1}.

In this talk, for the fist time, A_{r} measurement with the full LHCb Run I ($3 \mathrm{fb}^{-1}$)

Effective-lifetime asymmetry

- A_{Γ} already measured with $\mathrm{Ifb}^{-1}($ at 7 TeV$)$ [PRL II2 (2014) 04180 I$]$,
- Today extension to the full Run I data adding to $2 \mathrm{fb}^{-1}$ at 8 TeV .
- Adopted the same strategy by measuring effective lifetimes (single exponential-model) of SCS D*-tagged $D^{0} \rightarrow K K(\sim I I M)$ and $D^{0} \rightarrow \pi \Pi(\sim 4 M)$ decays;
- Unbinned maximum likelihood fits, in two stages
- 2D fit of $m(h h)$ and $\Delta m \rightarrow$ extract D^{0} signal
- 2D fit of $t\left(D^{0}\right)$ and $\ln \left(\chi^{2}{ }^{1}\left(D^{0}\right)\right) \rightarrow$ extract D^{0} and $\overline{\mathrm{D}}^{0}$ lifetime and compute A_{Γ}

\uparrow evaluate per-event acceptance function, moving the D^{0} along its momentum direction and re-running the trigger and the reconstruction for each event [Phys. Conf. Ser. 396 (2012) 022016];
\uparrow validate the analysis on larger sample of CF $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$ ($\sim 77 \mathrm{M}$) decays, where pseudo- A_{Γ} is expected to be undetectable with current sensitivity

Effective-lifetime asymmetry - results

[LHCb-CONF-20I6-010] $2012 \mathrm{data}^{2} 2 \mathrm{fb}^{-1}$

- No signs of indirect CP violation.

Dominant systematic uncertainties from charm from b decays, partially reconstructed background, decay-time acceptance and fit model.

- Combining results with previous Ifb^{-1} analysis:

$$
\begin{aligned}
& A_{\Gamma}(K K, 2011-2012)=(-0.14 \pm 0.37 \pm 0.10) \times 10^{-3} \\
& A_{\Gamma}(\pi \pi, 2011-2012)=(0.14 \pm 0.63 \pm 0.15) \times 10^{-3}
\end{aligned}
$$

$$
A_{\Gamma}(\pi \pi)=(0.03 \pm 0.79 \pm 0.16) \times 10^{-3}
$$

Towards future high precision measurements

- Computation of per-candidate acceptance function vs. D^{0} proper decay time is an essential ingredient of this measurement (and others at hadron colliders),
* this is done rerunning the trigger and reconstruction algorithm around a hundred times on each event [Phys. Conf. Ser. 396 (2012) 022016] (for 50M of $D^{0} \rightarrow K^{-} \pi^{+}$the total CPU needed is $\left.2.5 \times 10^{9} \mathrm{HSO} . \mathrm{s}\right)$
- While this technique has been successful, it will be demanding to continue to use it in the Run II and in the LHCb-Upgrade, where much higher statistics is expected.
- An alternative analysis of A_{Γ} has therefore been performed with a different technique, that can be 'easily' performed even with much larger samples.

A_{r} : measuring yield asymmetries in bins of decay time

- Measure yield asymmetries in various bin of D^{0} proper decay time,
- from sideband subtracted yields in each time bin

$$
A_{\mathrm{raw}}^{i}=\frac{n_{i}\left(D^{0} \rightarrow f\right)-n_{i}\left(\bar{D}^{0} \rightarrow f\right)}{n_{i}\left(D^{0} \rightarrow f\right)+n_{i}\left(\bar{D}^{0} \rightarrow f\right)} ; \quad i=1, \ldots, m
$$

- Straight line fit to the asymmetry as function of decay time

$$
A_{\text {raw }}(t)=A_{0}-\frac{t}{\tau_{D^{0}}} A_{\Gamma}
$$

- Sample splits in 4 subsample by year (201I @ 7TeV and 2012 @ 8 TeV) and magnet polarity (Up and Down)
- control sample: CF $D^{0} \rightarrow K \pi^{+}$, where pseudo- $A_{\Gamma}\left(D^{0} \rightarrow K \pi\right)=0$.
- This type of approach has already been used in the $1 \mathrm{fb}^{-1}$ publication. It has now been enhanced with new techniques, to significantly reduce the systematic uncertainties.

Detection asymmetries correction

- Momentum-dependent detection charge-asymmetries (through a correlation between the momentum of D^{0} candidate and its reconstructed proper decay time) generate a timedependent detection asymmetry.
[LHCb-CONF-2016-009]
- Detection asymmetries cancelled equalising soft pions kinematic between positive and negative charges.
- In particular, ($k, \theta_{x}, \theta_{y}$) of positive soft pions are reweigh to $\left(k,-\theta_{x}, \theta_{y}\right)$

$D^{0} \rightarrow K^{-} \pi^{+}$ of negative soft pions,
- restoring CP-symmetric detector acceptance:

$+1.65 \pm 0.30$ $\chi^{2} / \mathrm{ndf}=36.17 / 27$ -0.11 ± 0.25 $\chi^{2} / \mathrm{ndf}=12.81 / 27$
$+0.77 \pm 0.18$
$\chi^{2} / \mathrm{ndf}=57.10 / 27$
-0.06 ± 0.17
-0.06 ± 0.17
$x^{2} / \mathrm{ndf}=28.87 / 27$
$\begin{aligned}+0.41 & \pm 0.10 \\ x^{2} / n d f & =33.05 / 3\end{aligned}$

$$
\mathrm{n}^{+}\left(k, \theta_{x}, \theta_{y}\right)=\mathrm{n}^{-}\left(k,-\theta_{x}, \theta_{y}\right)
$$

$$
k=\frac{1}{\sqrt{p_{x}^{2}+p_{y}^{2}}} \quad \begin{aligned}
& \theta_{x}=\arctan \left(p_{x} / p_{z}\right) \\
& \theta_{y}=\arctan \left(p_{y} / p_{z}\right)
\end{aligned}
$$

$+0.56 \pm 0.30$ $\chi^{2} / \mathrm{ndf}=19.53 / 27$ $+0.04 \pm 0.25$ $\chi^{2} / \mathrm{ndf}=12.31 / 27$
-0.01 ± 0.18 $\chi^{2} / \mathrm{ndf}=29.47 / 27$ $+0.23 \pm 0.18$ $x^{2} / \mathrm{ndf}=29.64 / 27$
$+0.16 \pm 0.10$ $\chi^{2} / \mathrm{ndf}=3.01 / 3$
[LHCb-CONF-2016-009] Run I data, 3fb-1

- Results averaging the four subsamples:
$A_{\Gamma}(K K)=(-0.30 \pm 0.32 \pm 0.14) \times 10^{-3}$
$A_{\Gamma}(\pi \pi)=(0.46 \pm 0.58 \pm 0.16) \times 10^{-3}$
- No signs of indirect CP violation.

Dominant systematic uncertainties from charm from b decays, partially reconstructed background and random pions background subtraction.

Conclusion

- Search for mixing and CPV in DCS $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$ with double tagged D^{0}. [LHCb-PAPER-2016-33]
- Two measurements of A_{Γ} with two different method presented:

$$
\begin{aligned}
& A_{\Gamma}\left(K K, 1 \mathrm{fb}^{-1}+2 \mathrm{fb}^{-1}\right)=(-0.14 \pm 0.37 \pm 0.10) \times 10^{-3} \\
& A_{\Gamma}\left(\pi \pi, 1 \mathrm{fb}^{-1}+2 \mathrm{fb}^{-1}\right)=(0.14 \pm 0.63 \pm 0.15) \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& A_{\Gamma}\left(K K ; 3 \mathrm{fb}^{-1}\right)=(-0.30 \pm 0.32 \pm 0.14) \times 10^{-3} \\
& A_{\Gamma}\left(\pi \pi ; \mathrm{fb}^{-1}\right)=(0.46 \pm 0.58 \pm 0.16) \times 10^{-3}
\end{aligned}
$$

Measured CP asymmetries of effective lifetimes
(traditional method)
[LHCb-CONF-2016-010]
Measured using yield asymmetries in bins of decay time (new method) [LHCb-CONF-2016-009]

- World best measurements!
- Indirect CP violation still compatible with zero at a level of about 0.3 per mille.
- Two independent methods compatible with each other, confirming the robustness of the two analyses.
- Run I measurement of A_{Γ} completed. Now prepare to new exciting data from Run II.
-Spare slides

Charm flavour tagging

- In order to measure mixing and CPV, it is necessary to identify the flavour of the D^{0} meson.
- LHCb exploits two decays:
$\rightarrow D^{*+} \rightarrow D^{0} \pi^{+}$decays
+ semi-leptonic B-decays

Charge tag flavour

- CP-symmetrisation

- In order to cancel momentum-dependent asymmetries, a new method has been devised, the soft pions kinematic is equalised between the two charges:
$\uparrow\left(\kappa, \theta_{x}, \theta_{y}\right)$ of positive soft pions are reweigh to $\left(\kappa,-\theta_{x}, \theta_{y}\right)$ of negative soft pions.

$$
k=\frac{1}{\sqrt{p_{x}^{2}+p_{y}^{2}}} \quad \begin{aligned}
& \theta_{x}=\arctan \left(p_{x} / p_{z}\right) \\
& \theta_{y}=\arctan \left(p_{y} / p_{z}\right)
\end{aligned}
$$

The ratio $\left(\kappa, \theta_{x}, \theta_{y}\right) /\left(\kappa,-\theta_{x}, \theta_{y}\right)$ should be a constant if no detection
 asymmetries are present, but large variations are clearly visible. The CP-symmetrisation makes this flat and equal to one.

Reweigh details

- In each proper decay time, the reweigh asymmetry is

$$
\begin{gathered}
a_{\mathrm{corr}}^{\alpha}=\frac{\sum_{l, i, j} \sqrt{v_{l, i, j}} n_{l, i, j}^{\alpha+}-\sum_{l, i, j} \sqrt{w_{l, i, j}} n_{l, i, j}^{\alpha-}}{\sum_{l, i, j} \sqrt{v_{l, i, j}} n_{l, i, j}^{\alpha+}+\sum_{l, i, j} \sqrt{w_{l, i, j}} n_{l, i, j}^{\alpha-}} \\
w_{l, i, j}=\frac{\sum_{\alpha} n_{l, i, j}^{\alpha+}}{\sum_{\alpha} n_{l,-i, j}^{\alpha-}}, \quad v_{l, i, j}=\frac{\sum_{\alpha} n_{l, i, j}^{\alpha-}}{\sum_{\alpha} n_{l,-i, j}^{\alpha+}}
\end{gathered}
$$

