

Mixing and indirect CP violation using 2-body decays at LHCb

Pietro Marino on behalf of LHCb collaboration SNS & INFN-Pi

SCUOLA NORMALE SUPERIORE

• Why is charm charming?

- Unique and powerful probe of BSM flavour effects.
- Charm is an up-type quark:
 - complementary to B and K meson system;
 - best bounds on a generic new physics model after the kaon mixing.

Huge data samples,

- LHCb has the opportunity to exploit fully the charm sector as a probe for new physics.
- SM predictions are **difficult** on D-meson sector:
 - \bullet D⁰ mass \approx 1864 MeV/c²
 - QCD perturbative only at energies >> IGeV

th: talk of A. Lenz

• Charm mixing and CP violation

• Small value expected from SM $\mathcal{O}(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim$

Present sensitivity close to possible BSM contribution

& INFN-Pi) Marino (SNS ۵.

 D^0 mixing is established.

 $O(10^{-3})$

• CP violation yet unobserved!

گ 1.2

0.8

0.6

0.4

0.2

FAG-charm

Weight: 5600t Height: 10m Long: 21m

VErtex LOcator ~(15+29/pT)µm IP resolution ~45fs decay time resolution

110

RICH

Magnet 4 Tm dipole

σ_P/p ~ 0.5-1%@ 5-200 GeV/c

Tracking system

Calorimeters

Muon system

Mixing with $D^0 \rightarrow K\pi$ decays

б *LHCb*

• DT mixing results

- Mixing only: R⁺_D = R⁻_D,
 x'⁺=x'⁻ and y'⁺=y'⁻
- No direct CPV: $R^+_D = R^-_D$
- All CPV allowed: all +/- free
- Kπ detection asymmetry accounted for in the fit.
- Consistent with mixing only fit.

	Parameter	Value		
		No CPV		
	$R_D[10^{-3}]$	$3.48 \pm 0.10 \pm 0.01$		
	$x'^{2}[10^{-4}]$	$0.28 \pm 3.10 \pm 0.11$		4.0
	$y'[10^{-3}]$	$4.60 \pm 3.70 \pm 0.18$		4.8
	χ^2/NDF	6.293/7		4.4
			د- [4.2
	No	Direct CPV	[10]	4
	$R_D[10^{-3}]$	$3.48 \pm 0.10 \pm 0.01$	$^{+}/\epsilon_{r}^{+}$	3.8
	$x'^{2+}[10^{-4}]$	$1.94 \pm 3.67 \pm 1.17$	R	3.6
	$y'^{+}[10^{-3}]^{-1}$	$2.79 \pm 4.27 \pm 0.98$		3.4
	$x'^{2-}[10^{-4}]$	$-1.53 \pm 4.04 \pm 1.68$		3.2
	$y'^{-}[10^{-3}]$	$6.51 \pm 4.38 \pm 1.66$		3
	χ^2/NDF	5.589/5		4.8
				4.6
	All C	CPV Allowed		4.4
	$R_D^+[10^{-3}]$	$3.38 \pm 0.15 \pm 0.06$	[0 ⁻³]	4.2
	$x^{/2+}[10^{-4}]$	$-0.19 \pm 4.46 \pm 0.32$	$\left[\varepsilon_{r}^{-}\right] $	4
	$y'^{+}[10^{-3}]$	$5.81 \pm 5.25 \pm 0.31$	R	3.6
	$R_D^-[10^{-3}]$	$3.60 \pm 0.15 \pm 0.07$		3.4
	$x'^{2-}[10^{-4}]$	$0.79 \pm 4.31 \pm 0.38$		3.2
	$y'^{-}[10^{-3}]$	$3.32 \pm 5.21 \pm 0.40$		3
	χ^2/NDF	4.473/4		0.8
П				0.6
	ominant	systematic	' '	0.4
uncertainties from combinatorial				0.2
u background promotivate fit				
µ background, prompt veto, fit				
model and time-dependent				
asymmetry				
asymmetry.				-0.8

• DT + prompt mixing results

- Mixing only: R⁺_D = R⁻_D,
 x'⁺=x'⁻ and y'⁺=y'⁻
- No direct CPV: $R^+_D = R^-_D$
- All CPV allowed: all +/- free
- Kπ detection asymmetry accounted for in the fit.
- Consistent with mixing only fit.
- 10-20% of improvements in sensitivity when combining with prompt measurement.

Parameter	DT+prompt combination	Prompt alone	_	
	No CPV			
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067	_	
$x'^{2}[10^{-5}]$	3.6 ± 4.3	5.5 ± 4.9		
$y'[10^{-3}]$	5.23 ± 0.84	4.80 ± 0.94		
χ^2/NDF	96.594/111			
	No Direct CPV			
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067	[10 ⁻	
$x'^{2+}[10^{-5}]$	4.9 ± 5.0	6.4 ± 5.6	$ \varepsilon_{\rm r}^+ $	
$y'^{+}[10^{-3}]$	5.14 ± 0.91	4.80 ± 1.08	\mathbf{R}^{+}	
$x'^{2-}[10^{-5}]$	2.4 ± 5.0	4.6 ± 5.5		
$y'^{-}[10^{-3}]$	5.32 ± 0.91	4.8 ± 1.08		
$\chi^2/{ m NDF}$	96.147/109			
		Allowed		
D + [10 - 3]	All CPV Allowed			
$R_{D}^{+}[10^{\circ}]$	3.474 ± 0.081	3.545 ± 0.095		
$x'^{2+}[10^{-5}]$	1.1 ± 6.5	4.9 ± 7.0	-3]	
$y'^{+}[10^{-3}]$	5.97 ± 1.25	5.10 ± 1.38	[10	
$R_{D}^{-}[10^{-3}]$	3.591 ± 0.081	3.591 ± 0.090	$^{-}/\epsilon_{r}$	
$x'^{2-}[10^{-5}]$	6.1 ± 6.1	6.0 ± 6.8	R	
$y'^{-}[10^{-3}]$	4.50 ± 1.21	4.50 ± 1.39		
χ^2/NDF	94.960/108		_	

Dominant systematic
 uncertainties from combinatorial
 μ background, prompt veto, fit
 model and time-dependent
 asymmetry.

5.5 E

4.5

3.5

5.5

4.5

3.5

0.8

0.4

0.2

-0.2 -0.4

-0.6

-0.8

0

 R^{+}/ϵ_{r}^{+} - R^{-}/ϵ_{r}^{-} [10⁻³]

Indirect CP asymmetry in $D^0 \rightarrow h^+h^-$ decays

• A_r observable

- Time-dependent CP asymmetry, at the first order in t/τ_D , $A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)} \approx a_{CP}^{\text{dir}} + \frac{t}{\tau_D} a_{CP}^{\text{ind}}$
- The indirect CP violation is equal to $-A_{\Gamma}$, defined as [Phys. Rev. D 75, 036008]

$$A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\overline{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}^0 \to f)} = \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right] \right]$$

CPV in the mixing

CPV in the inference

 $\hat{\Gamma}$ is the effective decay with, $f = K^+ K^-$ or $\pi^+ \pi^-$

07/09/2016

$|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$ $x \equiv \frac{m_1 - m_2}{\Gamma}, \quad y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$ $\phi = \arg(q/p)$

A_r state-of-the-art

- Two measurement from LHCb
 - semi-leptonic tagged D^0 on the full Run I data sample of 3 fb⁻¹,
 - D^* -tagged D^0 with only Ifb^{-1} , the 2011 data sample.
- D*-tagged is already the world best measurement with only Ifb⁻¹.

A_r state-of-the-art

- Two measurement from LHCb
 - semi-leptonic tagged D⁰ on the full Run I data sample of 3 fb⁻¹,
 - D*-tagged D⁰ with only 1fb^{-1} , the 2011 data sample.
- D*-tagged is already the world best measurement with only Ifb⁻¹.

In this talk, for the fist time,

 A_{Γ} measurement with the full LHCb Run I (3fb⁻¹)

• Effective-lifetime asymmetry [LHCb-CONF-2016-010]

Entries / (0.04 [MeV/c²

 10^{2}

(0.02 [ps])

10

140

22 × 10⁵

LHCb Preliminary

- A_{Γ} already measured with Ifb⁻¹ (at 7TeV) [PRL 112 (2014) 041801],
- Today extension to the full Run I data adding to 2fb⁻¹ at 8TeV.
- Adopted the same strategy by measuring effective lifetimes (single exponential-model) of SCS Distance of the same strategy by measuring effective lifetimes (single exponential-model) of SCS Distance of the same strategy by measuring effective lifetimes (single exponential-model) of SCS Distance of the same strategy by measuring effective lifetimes (single exponential-model) of SCS Distance of the same strategy by measuring effective lifetimes (single exponential-model) of SCS Distance of the same strategy by measuring effective lifetimes (single exponential-model) of SCS Distance of the same strategy by measuring effective lifetimes (single exponential-model) of the same strategy by measuring effective lifetimes (single exponential-model) of the same strategy by measuring effective lifetimes (single exponential-model) of the same strategy by measuring effective lifetimes (single exponential-model) of the same strategy by measuring effective lifetimes (single exponential-model) of the same strategy by measure of the same strat $D^0 \rightarrow KK (\sim IIM) \cong D^0 \rightarrow \pi\pi (\sim 4M) decays; D^0 \rightarrow K^{\pi^+\pi^0}$
 - Unbinned maximum likelihood fits, in two stages
 - > 2D fit of m(h) and $\Delta m \rightarrow extract D^0$ signal
 - ▶ 2D fit of $t(D^0)$ and $\ln(\gamma^2 p(D^0)) \rightarrow extract D^0$ and \overline{D}^0 lifetime and $compute A_{\Gamma}$ 1860 1880 1900 $m(K^{-}K^{+}) [MeV/c^{2}]$
 - \bullet evaluate per-event acceptance function, moving the D⁰ along its momentum direction and re-running the trigger and the reconstruction for each event [Phys. Conf. Ser. 396 (2012) 022016];
 - validate the analysis on larger sample of CF D⁰→K⁻π⁺
 (~77M) decays, where pseudo- A_{Γ} is expected to be undetectable with current sensitivity

 $A_{\Gamma}(K\pi) = (-0.07 \pm 0.15) \times 10^{-3}$

• Effective-lifetime asymmetry - results

No signs of indirect CP violation.

Dominant systematic uncertainties from charm from *b* decays, partially reconstructed background, decay-time acceptance and fit model.

• Combining results with previous 1 fb⁻¹ analysis: $A_{\Gamma}(KK, 2011 - 2012) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3}$

 $A_{\Gamma}(\pi\pi, 2011 - 2012) = (0.14 \pm 0.63 \pm 0.15) \times 10^{-3}$

Towards future high precision measurements

- Computation of per-candidate acceptance function vs. D⁰ proper decay time is an essential ingredient of this measurement (and others at hadron colliders),
 - this is done rerunning the trigger and reconstruction algorithm around a hundred times on each event [Phys. Conf. Ser. 396 (2012) 022016] (for 50M of $D^0 \rightarrow K^-\pi^+$ the total CPU needed is 2.5×10⁹ HS06.s)
- While this technique has been successful, it will be demanding to continue to use it in the Run II and in the LHCb-Upgrade, where much higher statistics is expected.
- An alternative analysis of A_{Γ} has therefore been performed with a different technique, that can be 'easily' performed even with much larger samples.

A_r: measuring yield asymmetries in bins of decay time

- Measure yield asymmetries in various bin of D⁰ proper decay time,
 - from sideband subtracted yields in each time bin

$$A_{\text{raw}}^{i} = \frac{n_{i}(D^{0} \to f) - n_{i}(\overline{D}^{0} \to f)}{n_{i}(D^{0} \to f) + n_{i}(\overline{D}^{0} \to f)}; \qquad i = 1, \dots, m$$

Straight line fit to the asymmetry as function of decay time

$$A_{\rm raw}(t) = A_0 - \frac{t}{\tau_{D^0}} A_{\Gamma};$$

- Sample splits in 4 subsample by year (2011 @ 7TeV and 2012 @ 8TeV) and magnet polarity (Up and Down)
- control sample: CF $D^0 \rightarrow K^-\pi^+$, where pseudo- $A_{\Gamma}(D^0 \rightarrow K\pi) = 0$.
- This type of approach has already been used in the Ifb⁻¹ publication. It has now been enhanced with new techniques, to significantly reduce the systematic uncertainties.

 MeV/c^2)

(0.06

Candidates

Pull

(0.06 MeV/c²)

Candidates /

Pull

80

20

300

250

200

100

⁴140

Detection asymmetries correction

- Momentum-dependent detection charge-asymmetries (through a correlation between the momentum of D⁰ candidate and its reconstructed proper decay time) generate a timedependent detection asymmetry.
- Detection asymmetries cancelled equalising soft pions kinematic between positive and negative charges.
- In particular, (k, θ_x, θ_y) of positive soft pions are reweigh to $(k, -\theta_x, \theta_y)$ of negative soft pions,
 - restoring CP-symmetric detector acceptance:

$$n^+(k, \theta_x, \theta_y) = n^-(k, -\theta_x, \theta_y)$$

[LHCb-CONF-2016-009]

Results

- Results averaging the four subsamples: $A_{\Gamma}(KK) = (-0.30 \pm 0.32 \pm 0.14) \times 10^{-3}$
 - $A_{\Gamma}(\pi\pi) = (0.46 \pm 0.58 \pm 0.16) \times 10^{-3}$
 - No signs of indirect CP violation.

Dominant systematic uncertainties from charm from *b* decays, partially reconstructed background and random pions background subtraction.

07/09/2016

Conclusion

- Search for mixing and CPV in DCS $D^0 \rightarrow K\pi$ with double tagged D^0 . [LHCb-PAPER-2016-33]
- Two measurements of A_{Γ} with two different method presented:

$$A_{\Gamma}(KK, 1\text{fb}^{-1} + 2\text{fb}^{-1}) = (-0.14 \pm 0.37 \pm 0.10) \times 10^{-3}$$
$$A_{\Gamma}(\pi\pi, 1\text{fb}^{-1} + 2\text{fb}^{-1}) = (-0.14 \pm 0.63 \pm 0.15) \times 10^{-3}$$

 $A_{\Gamma}(KK;3\text{fb}^{-1}) = (-0.30 \pm 0.32 \pm 0.14) \times 10^{-3}$ $A_{\Gamma}(\pi\pi;3\text{fb}^{-1}) = (0.46 \pm 0.58 \pm 0.16) \times 10^{-3}$

• World best measurements!

- Indirect CP violation still compatible with zero at a level of about 0.3 per mille.
- Two independent methods compatible with each other, confirming the robustness of the two analyses.
- Run I measurement of A_{Γ} completed. Now prepare to new exciting data from Run II.

easured CP asymmetries of effective times nal method) NF-2016-010]

> vield asymmetries in decay time method) ONF-2016-009]

• Spare slides

Charm flavour tagging

- In order to measure mixing and CPV, it is necessary to identify the flavour of the D^0 meson.
- LHCb exploits two decays:
 - $D^{*+} \rightarrow D^0 \pi^+$ decays
 - semi-leptonic B-decays

07/09/2016

CP-symmetrisation

- In order to cancel momentum-dependent asymmetries, a new method has been devised, the soft pions kinematic is equalised between the two charges:
 - + (k, θ_x, θ_y) of positive soft pions are reweigh to ($k, -\theta_x, \theta_y$) of negative soft pions.

07/09/2016

The ratio $(k, \theta_x, \theta_y)/(k, -\theta_x, \theta_y)$ should be a constant if no detection asymmetries are present, but large variations are clearly visible. The CP-symmetrisation makes this flat and equal to one.

• Reweigh details

• In each proper decay time, the reweigh asymmetry is

$$a_{\rm corr}^{\alpha} = \frac{\sum_{l,i,j} \sqrt{v_{l,i,j}} n_{l,i,j}^{\alpha+} - \sum_{l,i,j} \sqrt{w_{l,i,j}} n_{l,i}^{\alpha-}}{\sum_{l,i,j} \sqrt{v_{l,i,j}} n_{l,i,j}^{\alpha+} + \sum_{l,i,j} \sqrt{w_{l,i,j}} n_{l,i}^{\alpha-}}$$

$$w_{l,i,j} = \frac{\sum_{\alpha} n_{l,i,j}^{\alpha+}}{\sum_{\alpha} n_{l,-i,j}^{\alpha-}},$$

 $v_{l,i,j} = \frac{\sum_{\alpha} n_{l,i,j}^{\alpha-}}{\sum_{\alpha} n_{l-i,j}^{\alpha+}}$

