Searches for CPV in D^+ decays at LHCb

Simone Stracka (Universita` & INFN Pisa)
on behalf of the LHCb collaboration

CHARM 2016
5-9 September 2016
CP violation in charm

- CPV not yet observed in charm - unique probe for CPV in the up-quark sector
 - In the Standard Model, CPV in mixing expected to be small and universal
 - Direct CPV dependent on the final state

- Sizeable direct CPV (above 10^{-3}) can be accommodated within Standard Model and beyond-SM pictures
 - Non-perturbative effects may be relevant
 - New Physics contributions, e.g., in gluonic penguin

- Need to **look at many decays** with comparable sensitivity
 - We don’t know where CPV might show up first
 - Key to interpret experimental results (SM or NP?)
Hadronic decays and CPV

● D mesons decay dominantly into hadronic final states, a large fraction of which are two-body modes (P P, V P, V V, A P)
 \(P = \text{pseudoscalar}, \ V = \text{vector}, \ A = \text{axial} \)

● In the SM only Singly-Cabibbo-Suppressed decays can possibly involve diagrams with different weak phases
 \[
 \text{Amp} = V_{cd}V_{ud}^*(\text{trees + penguins}) + V_{cs}V_{us}^*(\text{trees + penguins})
 \]

● CPV in SCS decays are expected only at 10^{-4} to 10^{-3} level
 \[
 a_{CP}^{dir} = \left| \frac{V_{cb}^* V_{ub}}{V_{cd}^* V_{ud}} \right| \sin \gamma \left| \frac{A_2}{A_1} \right| \sin \delta \sim 10^{-3} \left| \frac{A_2}{A_1} \right| \sin \delta
 \]
 \((\delta = \text{relative strong phase}) \)

CPV in SCS $D_{(s)}^+ \rightarrow PP$ decays

<table>
<thead>
<tr>
<th>Modes</th>
<th>a_{CP}(FSI)</th>
<th>a_{CP}(diagram)</th>
<th>a_{tree}^{CP}</th>
<th>$a_{tot}^{CP}(\times 10^{-3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^+ \rightarrow \pi^+\pi^0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.23</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^+\overline{K}^0$</td>
<td>-0.51 ± 0.30</td>
<td>-0.38</td>
<td>-0.08</td>
<td>-0.93</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+\eta$</td>
<td>-0.65</td>
<td>-0.46</td>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+\eta'$</td>
<td>0.41</td>
<td>0.30</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>$D_S^+ \rightarrow \pi^0K^+$</td>
<td>0.88</td>
<td>0.17</td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>$D_S^+ \rightarrow \pi^+K^0$</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>$D_S^+ \rightarrow K^+\eta$</td>
<td>-0.19</td>
<td>0.75</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>$D_S^+ \rightarrow K^+\eta'$</td>
<td>-0.41</td>
<td>-0.48</td>
<td></td>
<td>1.83</td>
</tr>
</tbody>
</table>

$1^{[\text{LHCb collaboration, JHEP 10 (2014) 025}}$

$2^{[\text{LHCb collaboration, JHEP 06 (2013) 112}}$

Most have π^0, η, η'!
\(\text{D}_{s}^{\pm} \rightarrow \eta' \pi^{\pm} \) and \(\text{D}^{\pm} \rightarrow \eta' \pi^{\pm} \) decays

- **Cabibbo Favored (D\(_{s}\)) and Singly-Cabibbo-Suppressed (D)**

- Small asymmetries in SM: null for CF decays, O(0.1%) or below for SCS

- **Measurements at e\(^{+}\)e\(^{-}\) machines**

 - \(A_{\text{CP}} (\text{D}^{\pm} \rightarrow \eta' \pi^{\pm}) = (-0.12 \pm 1.12 \pm 0.17)\% \)

 - \(A_{\text{CP}} (\text{D}_{s}^{\pm} \rightarrow \eta' \pi^{\pm}) = (-2.2 \pm 2.2 \pm 0.6)\% \)

Charm with neutrals at LHCb

✓ Large production cross-section
 \(\sim 10^{12} \) D mesons in acceptance ⇒ \(\sim 10^{10} \) on tape

✓ Large boost and good time-res.

✗ Dedicated trigger required

✗ Hard to do neutrals

⇨ Mitigate disadvantage of hadronic environment: reconstruct neutral in a charged mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^0)</td>
<td></td>
</tr>
<tr>
<td>2(\gamma)</td>
<td>98.823 ± 0.034</td>
</tr>
<tr>
<td>(e^+ e^- \gamma)</td>
<td>1.174 ± 0.035</td>
</tr>
<tr>
<td>(\eta)</td>
<td></td>
</tr>
<tr>
<td>2(\gamma)</td>
<td>39.41 ± 0.20</td>
</tr>
<tr>
<td>3(\pi^0)</td>
<td>32.68 ± 0.23</td>
</tr>
<tr>
<td>(\pi^+ \pi^- \pi^0)</td>
<td>22.92 ± 0.28</td>
</tr>
<tr>
<td>(\pi^+ \pi^- \gamma)</td>
<td>4.22 ± 0.08</td>
</tr>
<tr>
<td>(\eta')</td>
<td></td>
</tr>
<tr>
<td>(\pi^+ \pi^- \eta)</td>
<td>42.9 ± 0.7</td>
</tr>
<tr>
<td>(\rho^0 \gamma) (including non-resonant (\pi^+ \pi^- \gamma))</td>
<td>29.1 ± 0.5</td>
</tr>
<tr>
<td>(\pi^0 \pi^0 \eta)</td>
<td>22.2 ± 0.8</td>
</tr>
<tr>
<td>(\omega \gamma)</td>
<td>2.75 ± 0.23</td>
</tr>
<tr>
<td>(\gamma \gamma)</td>
<td>2.20 ± 0.08</td>
</tr>
</tbody>
</table>
\(\eta'\) reconstructed in \(\pi^+\pi^-\gamma\) final state

- Most important peaking background: \(D_{(s)}^+ \rightarrow \phi \pi^+, \phi \rightarrow \pi^+\pi^-\pi^0\)
- \(\eta'\) natural width small compared to the \(\pi^+\pi^-\gamma\) resolution:
 \[m(\eta'\pi^+)\] calculated constraining \(m(\pi^+\pi^-\gamma)\) to known \(\eta'\) mass
Measured (raw) asymmetries

We measure the asymmetry in the observed number of positive and negative candidates, A_{raw}

$$A_{\text{raw}}(D_{(s)}^{\pm} \to f^{\pm}) = \frac{N(D_{(s)}^{+} \to f^{+}) - N(D_{(s)}^{-} \to f^{-})}{N(D_{(s)}^{+} \to f^{+}) + N(D_{(s)}^{-} \to f^{-})}$$

This is related to first order to CP asymmetries by:

$$A_{\text{raw}} \sim A_{\text{CP}} + A_{\text{det}} + A_{\text{prod}}$$
Difference of CP asymmetries: ΔA_{CP}

A_{det} and A_{prod} cancel in the difference of asymmetries with control samples with similar production and decay topology.

cancellation relies on similar kinematic distributions

$n(D^\pm): 1165k$
$n(D_s^\pm): 6657k$
Improving cancellation of A_{det}

- Equalize bachelor pion selection for signal and control samples
- Perform the analysis in bins of the bachelor pion transverse momentum and pseudorapidity
Measurement of raw asymmetries

- Different samples for different beam and trigger conditions, fitted individually
- Simultaneous maximum likelihood fit to D+ and D- in all bins

Points with errors represent data, while the curves represent the fitted models (solid), the $D_s^\pm \rightarrow \phi\pi^\pm$ (dashed) and $D^\pm \rightarrow \phi\pi^\pm$ (long-dashed) components, and the sum of all background.
Systematic uncertainties

- Main systematic from background shape: several alternative models tested, maximum deviation as systematic uncertainty
- Uncertainties related to production mechanism negligible

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta A_{CP}(D_s^\pm \rightarrow \eta'\pi^\pm)$</th>
<th>$\Delta A_{CP}(D^\pm \rightarrow \eta'\pi^\pm)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-prompt charm</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Trigger</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Background model</td>
<td>0.19</td>
<td>0.50</td>
</tr>
<tr>
<td>Fit procedure</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>Sideband subtraction</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>D_s production asymmetry</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>K^0 asymmetry</td>
<td>–</td>
<td>0.08</td>
</tr>
<tr>
<td>Total</td>
<td>0.24</td>
<td>0.55</td>
</tr>
<tr>
<td>Statistical uncertainties</td>
<td>0.36</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Results

- ΔA_{CP} values from all kinematic bins are averaged together:

$A_{raw}(D^+_s \rightarrow \eta'\pi^+) - A_{raw}(D^+_s \rightarrow \phi\pi^+) = (-0.44 \pm 0.36 \pm 0.24)\%$

$A_{raw}(D^+ \rightarrow \eta'\pi^+) - A_{raw}(D^+ \rightarrow K^0_S\pi^+) = (-0.50 \pm 0.72 \pm 0.55)\%$

- To get $A_{CP}(D_{(s)}^+ \rightarrow \eta'\pi^+)$, must correct for the known CP asymmetries of control channels:

$A_{CP}(D^+ \rightarrow K^0_S\pi^+) = (-0.024 \pm 0.094 \pm 0.067)\%$

$A_{CP}(D^+_s \rightarrow \phi\pi^+) = (-0.38 \pm 0.26 \pm 0.08)\%$

[D0 collaboration, Phys. Rev. Lett. 112 (2014) 111804]

- $A_{raw}(D^+ \rightarrow K^0_S\pi^+)$ also contains a contribution from K^0 CP and detection asymmetries, $A(K^0) = (0.08 \pm 0.01)\%$, to be subtracted

[LHCb collaboration, JHEP 07 (2014) 041]
Results

\[A_{CP}(D^{\pm} \rightarrow \eta'\pi^{\pm}) = (-0.61 \pm 0.72 \pm 0.55 \pm 0.12)\% \]
\[A_{CP}(D_{s}^{\pm} \rightarrow \eta'\pi^{\pm}) = (-0.82 \pm 0.36 \pm 0.24 \pm 0.27)\% \]

Previous measurements at \(e^+e^- \) machines:

\[A_{CP}(D^{\pm} \rightarrow \eta'\pi^{\pm}) = (-0.12 \pm 1.12 \pm 0.17)\% \]

\[A_{CP}(D_{s}^{\pm} \rightarrow \eta'\pi^{\pm}) = (-2.2 \pm 2.2 \pm 0.6)\% \]
Conclusions

- Most precise (better than O(%)\)) measurement of CP asymmetries in $D_s^{\pm} \rightarrow \eta'\pi^\pm$ and $D^{\pm} \rightarrow \eta'\pi^\pm$ decays to date [LHCB-PAPER-2016-041]

- Consistent with no CP violation and SM expectations

- Analysis of charged decay modes of neutral mesons (π^0, η, η') allows previously unanticipated measurements of CP asymmetries in D^+ and D_s^+ decays
D-candidates kinematic distributions

In each bachelor-pion kinematic bin, we reweight the D-meson pseudorapidity or Pt distribution in the control samples, and re-calculate ΔA_{raw}.
Secondary charm

Secondary charm suppressed by cut on χ^2 of the PV-constrained fit

Bias due to D from b is given by:

$$A^D_{P(s)}(corr) = \frac{A^D_{P(s)} + f A^b_{P}}{1 + f},$$

and f can differ in signal and control samples \rightarrow no cancellation

f is calculated from cross sections, branching fractions, efficiencies

Simone Stracka - CHARM 2016 - Bologna - 07/09/2016
Control samples

![Graph showing control samples for LHCb Preliminary](image-url)
LHCb Yield (63k D⁺) is ~10 times higher than Belle (but also higher background)

\[D^+ \to \pi^+ \eta', \quad \eta' \to \pi^+ \pi^- \eta_{\gamma\gamma} \]

Calorimeters

- **ECAL** made of shashlik blocks
 - Lead - scintillator stack (25 X_0)
 - ~6000 channels, readout by PMT
 - $\sigma(E)/E \sim 10\% / \sqrt{E} + 1\%$

- **HCAL**: scintillating tiles in iron
 - ~1500 channels, same readout and electronics as ECAL
 - $\sigma(E)/E \sim 70\% / \sqrt{E} + 9\%
 - Mainly used for trigger

- **SPD and PreShower**
 - Same geometry as ECAL
 - Scintillator tiles readout by MAPMT, separated by 2.5 X_0 lead sheet
 - Identify electron/photon, used in L0 trigger