Amplitude analysis of $D^0 \to K^-\pi^+\pi^+\pi^$ and measurements of D two body decays Yu Lu (Double tag method K_S veto: Suppress the peaking background $D^0 \to K_S^0 K^- \pi^+$. Tag yields is 15912 with a purity of 99.4%! # Analysis method The ΔE and M_{BC} plots for $K\pi$ side and $K\pi\pi\pi$ side. ## Amplitude analysis method #### **Amplitude construction** The total decay amplitude is the function of final particle four momenta p_j and can be modeled as a coherent sum over all the amplitudes: $$M(p_j) = \sum_n \rho_n e^{i\phi_n} A_n(p_j),$$ where ρ_n and ϕ_n is the magnitude and phase of the n^{th} amplitude. $A_n(p_j)$ describe the relative contribution and dynamics of the n^{th} amplitude and given by $$A_n(p_j) = P_n^1(m_1)P_n^2(m_2)S_n(p_j)F_n^1(p_j)F_n^2(p_j)F_D^2(p_j).$$ Propagators of intermediate resonances Spin factors Constructed with covariant tensor formalism Blatte-Weisskopf barriers Spin factors are constructed with covariant tensor formalism (PRD 48, 1225 (1993)). For $K^*(892)$ and $a_1(1260)$, RBW with a width depends upon the momenta and angular momenta of the daughter is used. For $\rho(770)$, GS formula is used (PRL 21, 244(1968)). For $K_1(1270)$, RBW with a constant width is used. For $K\pi$ S-wave, we use the parameterization used in the Dalitz plot analysis of $D^0 \to K_S^0 \pi^+ \pi^-$ of BABAR (PRD 78, 034023). ## Amplitude analysis method #### **Fit Fractions** Magnitudes ρ may vary with the choice of normalization or formalism convention, so we use fit fraction (FF) instead of ρ , which is given by $$FF(n) = \frac{\int |\tilde{A}_{\mathbf{n}}(p_j)|^2 R_4(p_j) dp_j}{\int |M(p_j)|^2 R_4(p_j) dp_j},$$ where $R_4(p_i)dp_i$ is the standard element of four-body phase space. The integrals are performed with MC integration: $$FF(n) = \frac{\sum_{k}^{N_{MC}} |\tilde{A}_{\mathbf{n}}(p_j)|^2}{\sum_{k}^{N_{MC}} |M(p_j)|^2}.$$ Where N_{MC} is the number of MC sample events used to calculate fit fractions, $\tilde{A}_{\mathbf{n}}(p_j)$ is either the \mathbf{n}^{th} amplitude ($\tilde{A}_{\mathbf{n}}(p_j) = \rho_n e^{i\phi_n} A_n(p_j)$) or the \mathbf{n}^{th} subset (component) of coherent sum of amplitudes ($\tilde{A}_{\mathbf{n}}(p_j) = \sum_{n_l} \rho_{n_l} e^{i\phi_{n_l}} A_{n_l}(p_j)$). | Amplitude | ϕ_i | Fit fraction (%) | |---|---------------------------|--------------------------| | $D^0[S] \to \bar{K}^* \rho^0$ | $2.35 \pm 0.06 \pm 0.18$ | $6.5 \pm 0.5 \pm 0.8$ | | $D^0[P] \to \bar{K}^* \rho^0$ | $-2.25 \pm 0.08 \pm 0.15$ | $2.3 \pm 0.2 \pm 0.1$ | | $D^0[D] o \bar{K}^* \rho^0$ | $2.49 \pm 0.06 \pm 0.11$ | $7.9 \pm 0.4 \pm 0.7$ | | $D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$ | 0(fixed) | $53.2 \pm 2.8 \pm 4.0$ | | $D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$ | $-2.11 \pm 0.15 \pm 0.21$ | $9.3 \pm 0.1 \pm 0.1$ | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$ | $1.48 \pm 0.21 \pm 0.24$ | 0.19_{7} 0.1 \pm 0.1 | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$ | $3.00 \pm 0.09 \pm 0.15$ | $9.7 \pm 0.2 \pm 0.2$ | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$ | $-2.46 \pm 0.06 \pm 0.21$ | $3.4\pm0.3\pm0.5$ | | $D^0 \to (\rho^0 K^-)_A \pi^+, (\rho^0 K^-)_A [D] \to K^- \rho^0$ | $-0.43 \pm 0.09 \pm 0.12$ | $1.1 \pm 0.2 \pm 0.3$ | | $D^0 \to (K^- \rho^0)_P \pi^+$ | $-0.14 \pm 0.11 \pm 0.10$ | $7.4 \pm 1.6 \pm 5.7$ | | $D^0 \to (K^- \pi^+)_{\rm S} \rho^0$ | $-2.45 \pm 0.19 \pm 0.47$ | $2.0 \pm 0.7 \pm 1.9$ | | $D^0 \to (K^- \rho^0)_V \pi^+$ | $-1.34 \pm 0.12 \pm 0.09$ | $0.4 \pm 0.1 \pm 0.1$ | | $D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$ | $-2.09 \pm 0.12 \pm 0.22$ | $2.4 \pm 0.5 \pm 0.5$ | | $D^0 o ar{K}^{*0}(\pi^+\pi^-)_{\mathbb{S}}$ | $-0.17 \pm 0.11 \pm 0.12$ | $2.6 \pm 0.6 \pm 0.6$ | | $D^0 \to (K^{*0}\pi^-)_{\nabla}\pi^+$ | $-2.13 \pm 0.10 \pm 0.11$ | $0.8 \pm 0.1 \pm 0.1$ | | $P^{\circ} \rightarrow ((K^- \pi^+)_{\rm S} \pi^-)_{\rm A} \pi^+$ | $-1.36 \pm 0.08 \pm 0.37$ | $5.6 \pm 0.9 \pm 2.7$ | | $D \to K ((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$ | $-2.23 \pm 0.08 \pm 0.22$ | $13.1 \pm 1.9 \pm 2.2$ | | $D^0 \to (K^-\pi^+)_{\rm S}(\pi^+\pi^-)_{\rm S}$ | $-1.40 \pm 0.04 \pm 0.22$ | $16.3 \pm 0.5 \pm 0.6$ | | $D^0[S] \to (K^-\pi^+)_V(\pi^+\pi^-)_V$ | $1.59 \pm 0.13 \pm 0.41$ | $5.4 \pm 1.2 \pm 1.9$ | | $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$ | $-0.16 \pm 0.17 \pm 0.43$ | $1.9\pm0.6\pm1.2$ | | $D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$ | $2.58 \pm 0.08 \pm 0.25$ | $2.9\pm0.5\pm1.7$ | | $D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$ | $-2.92 \pm 0.14 \pm 0.12$ | $0.3\pm0.1\pm0.1$ | | $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$ | $2.45 \pm 0.12 \pm 0.37$ | $0.5\pm0.1\pm0.1$ | #### Systematic Uncertainties Study The systematic uncertainties are divided into four categories: (I) Amplitude model, (II) Background estimation, (III) Experimental effects, (IV) Fitter performance. These uncertainties are added in quadrature, as they are uncorrelated, to obtain the total systematic uncertainties. #### I. Amplitude model This uncertainties come from the fixed parameters in the formula of total amplitude, include: - the effective radius of resonance in the Blatte-weisskopf barriers, - the mass and width of intermediate resonances, - the fixed parameters in the formula of $K\pi$ S wave. #### Systematic Uncertainties Study - II. Background estimation This category include 3 sources: - the shape of peaking background $D^0 \to K_S^0 K^- \pi^+$, - the number of peaking background $D^0 \to K_S^0 K^- \pi^+$, - the effect of other background. - III. Experimental effects In this category, we studied the effect from PID and tracking efficiencies and resolution. - IV. Fitter performance We estimate the possible bias from the fit with Pull distribution check. ## Systematic Uncertainties Study #### Systematic uncertainties of phases of different amplitudes | 1 | | $Source(\sigma_{stat})$ | | | 4-4-1/- | |--|------|-------------------------|------|------|------------------------| | ϕ_i | I | II | III | IV | $total(\sigma_{stat})$ | | $D^0[S] \to \bar{K}^{*0} \rho^0$ | 2.96 | 0.04 | 0.14 | 0.13 | 2.97 | | $D^0[P] \to \bar{K}^{*0} \rho^0$ | 1.98 | 0.04 | 0.11 | 0.12 | 1.98 | | $D^0[D] o \bar{K}^{*0} \rho^0$ | 1.78 | 0.03 | 0.18 | 0.09 | 1.79 | | $D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$ | 1.38 | 0.02 | 6.09 | 0.09 | 1.39 | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$ | 1.10 | 0.07 | 0.10 | 0.09 | 1.11 | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$ | 1.61 | 0.06 | 9.11 | 0.06 | 1.62 | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$ | 3.61 | 0.03 | 0.09 | 0.13 | 3.62 | | $D^0 \to (\rho^0 K^-)_{\rm A} \pi^+$ | 1.28 | 0.06 | 0.14 | 0.09 | 1.29 | | $D^0 \to (K^- \rho^0)_{\rm P} \pi^+$ | 0.92 | 0.10 | 0.10 | 0.07 | 0.93 | | $D^0 \to (K^-\pi^+)_S \rho^0$ | 2.46 | 0.06 | 0.10 | 0.09 | 2.47 | | $D^0 \to (K \nearrow \rho^0) / \pi^+$ | 0.74 | 0.01 | 0.09 | 0.08 | 0.75 | | $D^0 \rightarrow (\mathring{K}^*0)_{\Gamma^*})_{P} \pi^+$ | 1.82 | 0.03 | 0.09 | 0.06 | 1.82 | | $E^0 ightarrow ar{K}^*(\pi^+\pi^-)_{ m S}$ | 1.07 | 0.04 | 0.12 | 0.11 | 1.08 | | $D^{\circ} \rightarrow (K^{\circ \circ} \pi^{-})_{V} \pi^{+}$ | 1.00 | 0.02 | 0.10 | 0.18 | 1.02 | | $D^0 \to ((K^-\pi^+)_{\rm S}\pi^-)_{\rm A}\pi^+$ | 4.78 | 0.15 | 0.12 | 0.07 | 4.79 | | $D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$ | 2.69 | 0.13 | 0.10 | 0.07 | 2.70 | | $D^0 \to (K^-\pi^+)_{\rm S}(\pi^+\pi^-)_{\rm S}$ | 6.27 | 0.04 | 0.10 | 0.12 | 6.27 | | $D^0[S] \to (K^-\pi^+)_V(\pi^+\pi^-)_V$ | 3.28 | 0.06 | 0.09 | 0.06 | 3.28 | | $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$ | 2.59 | 0.09 | 0.10 | 0.10 | 2.60 | | $D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$ | 3.07 | 0.09 | 0.10 | 0.18 | 3.08 | | $D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$ | 0.81 | 0.04 | 0.12 | 0.06 | 0.82 | | $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$ | 3.11 | 0.06 | 0.11 | 0.16 | 3.19 | ## Systematic Uncertainties Study #### Systematic uncertainties of fit fractions of different amplitudes | Fit fractions | | $Source(\sigma_{stat})$ | | | 1/ | |--|------|-------------------------|------|------|------------------------| | FIT HACTIONS | I | II | III | IV | $total(\sigma_{stat})$ | | $D^0[S] \to \bar{K}^{*0} \rho^0$ | 1.76 | 0.04 | 0.09 | 0.10 | 1.77 | | $D^0[P] \to \bar{K}^{*0} \rho^0$ | 0.27 | 0.02 | 0.09 | 0.12 | 0,30 | | $D^0[D] o ar K^{*0} ho^0$ | 1.79 | 0.06 | 0.12 | 0.17 | 1.80 | | $D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$ | 1.48 | 0.10 | 0.12 | 0.07 | 1.45 | | $D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$ | 0.93 | 0.04 | 0.02 | 0,06 | 0.94 | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$ | 1.01 | 9.65 | 0,11 | 0.16 | 1.03 | | $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$ | 1.12 | 0.03 | 0.12 | 0.13 | 1.14 | | $D^0 \to K_1(1270)^- \pi^+, K_1^-(1270) \to K_{-}^{0}$ | 1.58 | 0.04 | 0.23 | 0.06 | 1.60 | | $D^0 \to (\rho^0 K^-)_{\rm A} \pi^+$ | 1.38 | 0.08 | 0.09 | 0.09 | 1.39 | | $D^0 o (\bar{K}^{*0}\pi)_{\mathrm{P}}\pi$ | 0.93 | 0.06 | 0.09 | 0.16 | 0.95 | | $D^0 o (K^-\pi^+)_{\mathbb{S}} \rho^0$ | 2.81 | 0.09 | 0.11 | 0.09 | 2.82 | | $D^0 ightarrow (K^- ho^0)_{ m V} \pi^+$ | 0.69 | 0.03 | 0.09 | 0.06 | 0.70 | | $P^0 \rightarrow (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$ | 0.93 | 0.06 | 0.09 | 0.16 | 0.95 | | $D^0 o K^{*0} (\pi^+\pi^-)_{ m S}$ | 1.06 | 0.05 | 0.09 | 0.20 | 1.08 | | $D^0 \to (K^{*0}\pi^-)_{\rm V}\pi^+$ | 0.60 | 0.02 | 0.00 | 0.10 | 0.61 | | $D^{0} \to ((K^{-}\pi^{+})_{\rm S}\pi^{-})_{\rm A}\pi^{+}$ | 3.10 | 0.07 | 0.09 | 0.06 | 3.10 | | $D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$ | 1.14 | 0.08 | 0.10 | 0.07 | 1.15 | | $D^0 \to (K^-\pi^+)_{\rm S}(\pi^+\pi^-)_{\rm S}$ | 1.29 | 0.12 | 0.10 | 0.12 | 1.30 | | $D^0[S] \to (K^-\pi^+)_{\rm V}(\pi^+\pi^-)_{\rm V}$ | 1.73 | 0.07 | 0.09 | 0.07 | 1.73 | | $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$ | 2.08 | 0.12 | 0.10 | 0.07 | 2.09 | | $D^0 \to (K^-\pi^+)_{\rm V}(\pi^+\pi^-)_{\rm S}$ | 3.54 | 0.05 | 0.10 | 0.11 | 3.54 | | $D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$ | 0.87 | 0.07 | 0.11 | 0.07 | 0.88 | | $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$ | 0.99 | 0.09 | 0.10 | 0.08 | 1.01 | According to the intermediate resonances, we divides the 23 amplitudes into 7 components. | Component | Fit fraction (% | |--|------------------------| | $D^0 \to \bar{K}^{*0} \rho^0$ | $12.3 \pm 0.4 \pm 0.5$ | | $D^0 \to K^- a_1^+(1260) (\rho^0 \pi^+)$ | $54.6 \pm 2.8 \pm 30$ | | $D^0 \to K_1^-(1270)(\bar K^{*0}\pi^-)\pi^+$ | $0.8 \pm 0.2 \pm 0.2$ | | $D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$ | $3.4 \pm 0.3 \pm 0.2$ | | $D^0 \to K^-\pi^+\rho^0$ | $8.4\pm1.1\pm2.2$ | | $D^0 \to \bar{K}^{*0} \pi^+ \pi^-$ | $7.0 \pm 0.4 \pm 0.3$ | | $D^0 \to K^- \pi^+ \pi^+ \pi^-$ | $21.9 \pm 0.6 \pm 0.6$ | With the branching fraction of $D^0 \to K^-\pi^+\pi^-\pi^-$ from PDG, the branching fractions can calculated as: $Br(Component) = FF(Componet)Br(D^0 \to K^-\pi^+\pi^+\pi^-)$. | Component | Branching fraction (%) | PDG value (%) | |---|------------------------------------|-----------------| | $D^0 \to \bar{K}^{*0} \rho^0$ | $0.99 \pm 0.04 \pm 0.04 \pm 0.03$ | 1.05 ± 0.23 | | $D^0 \to K^- a_1^+ (1260) (\rho^0 \pi^+)$ | $4.41 \pm 0.22 \pm 0.30 \pm 0.13$ | 3.6 ± 0.6 | | $D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi)\pi$ | $90.07 \pm 0.01 \pm 0.02 \pm 0.00$ | 0.29 ± 0.03 | | $D^0 \to K_1^-(1270)(K^- \rho^0)\pi^+$ | $0.27 \pm 0.02 \pm 0.02 \pm 0.01$ | 0.29 ± 0.03 | | $D^0 \to K^- \pi^+ \rho^0$ | $0.68 \pm 0.09 \pm 0.18 \pm 0.02$ | 0.51 ± 0.23 | | $D^0 \to \bar{K}^{*0} \pi^+ \pi^-$ | $0.57 \pm 0.03 \pm 0.03 \pm 0.02$ | 0.99 ± 0.23 | | $D^0 \to K^- \pi^+ \pi^+ \pi^-$ | $1.77 \pm 0.05 \pm 0.04 \pm 0.05$ | 1.88 ± 0.26 | Measurements of branching fractions of some PP decays of D^+ and D^0 #### Motivation There are some interests of factors in the measurements of $D \to PP$: - great significance in the study of the strong and weak interactions in D decays. - Study of SU(3) breaking effect. - Observation of CP violation in D decay. Most of the D decays have been studied by CLEO in 2010¹, other measurements come from Belle², BaBar³ and CDF⁴, etc. Some of the branching fractions (BFs) are not well established. With the 2.93 fb⁻¹ data taken at 3.773 GeV, these measurements are expected to be improved. - 1. Mendez, H., et al. (CLEO) Phy. Rev. D 81.5 (2010): 052013. 3 - 2. $\mathcal{B}(K^+\eta)$, $\mathcal{B}(K^+\eta')$ from Belle's measurements in 2011 - 3. \mathcal{B} (K⁺ π^0), $\mathcal{B}(\pi^+\pi^0)$ from BaBar's measurements in 2006 - 4. $\mathcal{B}(\pi^+\pi^-)$, $\mathcal{B}(K^+K^-)$ from CDF's measurements in 2005 Fit to M_{BC} distributions of single tag D^0 of data # Fit to M_{BC} distributions of single tag D^+ of data #### BF results | Mode | N net
signal | ε (%) | $\mathcal{B}\pm(stat)\pm(sys)$ | B _{PDG} | |--|---|--|--|--| | $\pi^{+}\pi^{-}$ $K^{+}K^{-}$ $K^{-}\pi^{+}$ $K_{S}^{0}\pi^{0}$ $K_{S}^{0}\eta$ $K_{S}^{0}\eta'$ | 21105 ± 249 56438 ± 273 537745 ± 767 66539 ± 302 9532 ± 126 | 66.03 ± 0.25 62.82 ± 0.32 64.98 ± 0.09 38.06 ± 0.17 31.96 ± 0.14 | $(1.505 \pm 0.018 \pm 0.031) \times 10^{-3}$ $(4.229 \pm 0.020 \pm 0.087) \times 10^{-3}$ $(3.896 \pm 0.006 \pm 0.073) \%$ $(1.236 \pm 0.006 \pm 0.032) \%$ $(5.149 \pm 0.068 \pm 0.134) \times 10^{-3}$ | $(1.421 \pm 0.025) \times 10^{-3}$
$(4.01 \pm 0.07) \times 10^{-3}$
$(3.93 \pm 0.04) \%$
$(1.20 \pm 0.04) \%$
$(4.85 \pm 0.30) \times 10^{-3}$ | | $\frac{\kappa_S^0 \eta'}{\pi^0 \pi^+}$ | 3007 ± 61 10108 ± 267 | 12.66 ± 0.08
48.98 ± 0.34 | $(9.562 \pm 0.197 \pm 0.379) \times 10^{-3}$
$(1.259 \pm 0.033 \pm 0.025) \times 10^{-3}$ | $(9.5 \pm 0.5) \times 10^{-3}$ $(1.24 \pm 0.06) \times 10^{-3}$ | | $\pi^0 K^+ $ $\eta \pi^+ $ ηK^+ | 1834 ± 168 11636 ± 215 439 ± 72 | 51.52 ± 0.42 46.96 ± 0.25 48.21 ± 0.31 | $(2.171 \pm 0.198 \pm 0.060) \times 10^{-4}$
$(3.790 \pm 0.070 \pm 0.075) \times 10^{-3}$
$(1.393 \pm 0.228 \pm 0.124) \times 10^{-4}$ | $(1.89 \pm 0.25) \times 10^{-4}$
$(3.66 \pm 0.22) \times 10^{-3}$
$(1.12 \pm 0.18) \times 10^{-4}$ | | $\eta'\pi^{+} \\ \eta'K^{+} \\ K_{S}^{0}\pi^{+}$ | 3088 ± 83
87 ± 25
93884 ± 352 | 21.49 ± 0.18 22.39 ± 0.22 51.38 ± 0.18 | $(5.122 \pm 0.140 \pm 0.210) \times 10^{-3}$
$(1.377 \pm 0.428 \pm 0.202) \times 10^{-4}$
$(1.591 \pm 0.006 \pm 0.033) \times 10^{-2}$ | $(4.84 \pm 0.31) \times 10^{-3}$
$(1.83 \pm 0.23) \times 10^{-4}$
$(1.53 \pm 0.06) \times 10^{-2}$ | | $\kappa_s^0 \kappa^+$ | 17704 ± 151 | 48.45 ± 0.14 | $(3.183 \pm 0.028 \pm 0.065) \times 10^{-3}$ | $(2.95 \pm 0.15) \times 10^{-3}$ | Has been corrected by PID, tracking and K_S^0 , π^0/η finding $$\mathcal{B} = \frac{N_{net}^{signal}}{2 \cdot N_{D^0 \bar{D}^0 (D^+ D^-) \cdot \varepsilon}}, N_{D^0 \bar{D}^0} = \left(10,621 \pm 29_{(stat)}\right) \times 10^3, N_{D^+ D^-} = \left(8,296 \pm 31_{(stat)}\right) \times 10^3$$ quoted from Derrick's talk given at APS2014 $B(D^0 \to K^-\pi^+)$ has been corrected by $B(D^0 \to K^+\pi^-)$ quoted from PDG. #### Comparisons with Other Experiments in Some Modes The results from BESIII are consistent with other measurements and have comparable precisions with the existing best measurements. # Summary - With 2.93 fb⁻¹ $\psi(3770)$ data at BESIII, some hadronic decays have been measured. - Amplitude analysis of $D^0 \to K^-\pi^+\pi^+\pi^-$ - Measurements of some decays of D^+ or D^0 to PP - Amplitude (Dalitz plot) analysis provides a kind of method to deal with multi-body decays. - With about 3 fb⁻¹ taken at 4.18GeV this year, more and more results about $D/D_{\rm S}$ will come out. # Thank you!