D_s physics at BESIII

Guang Zhao (*zhaog@ihep.ac.cn*) Institute of High Energy Physics On behalf of the BESIII Collaboration September 7th, 2016 CHARM 2016, Bologna, Italy

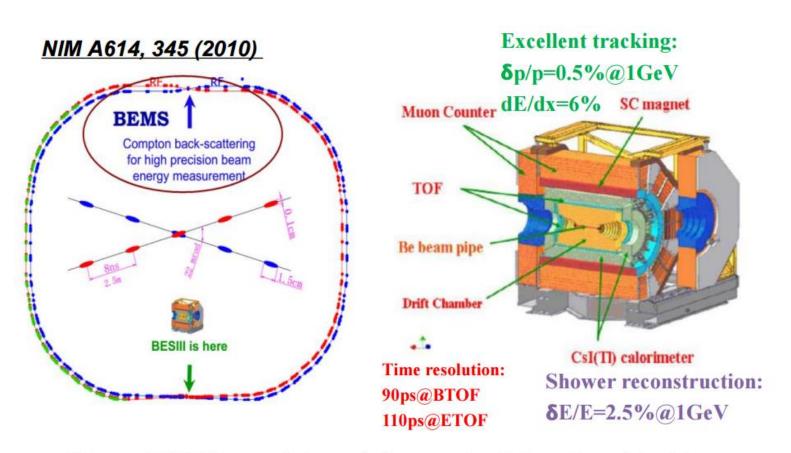
Outline

- Introduction to BEPCII/BESIII
- Data sample at 4.009 GeV

Analysis results

- D_s→μν/τν
- D_s→η'X/η'ρ
- $D_s \rightarrow \eta^{(')} ev$
- Other results
 - D^{*0} branching fractions

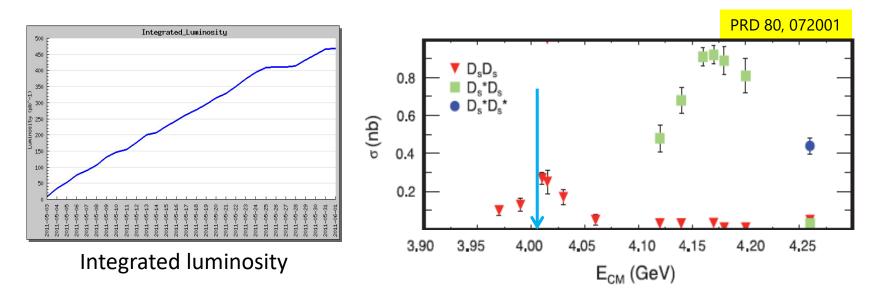
Summary



BEPCII

₩S

BESIII detector


The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Data samples

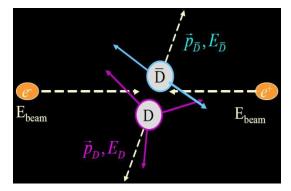
482 pb⁻¹ $\psi(4040)$ data @ 4.009 GeV

- Primary to search XYZ particles
- Enhanced D_sD_s production
- Below D_sD^{*}_s threshold, low background level

BES Charm meson production near threshold

Near the peak of $\psi(4040)$ resonance, only $D_s D_s$ pairs are produced

Pros


- ✓ Clean environment
- \checkmark Known initial energy
- ✓ Both D_s^+ and D_s^- can fully reconstructed
- ✓ Absolute measurement

Analysis technique

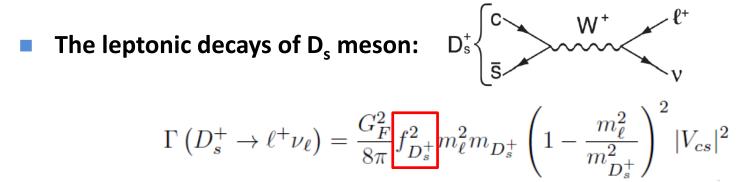
- Single tag (ST): high efficiency, high background level
- Double tag (DT): low efficiency, low background level

Useful Variables

- Beam constraint mass: $M_{BC} = \sqrt{E_{beam}^2 p_{D_s}^2}$ (better resolution)
- Energy difference: $\Delta E = E_{beam} E_{D_s}$

Sept. 7, 2016

CHARM2016, Bologna, Italy

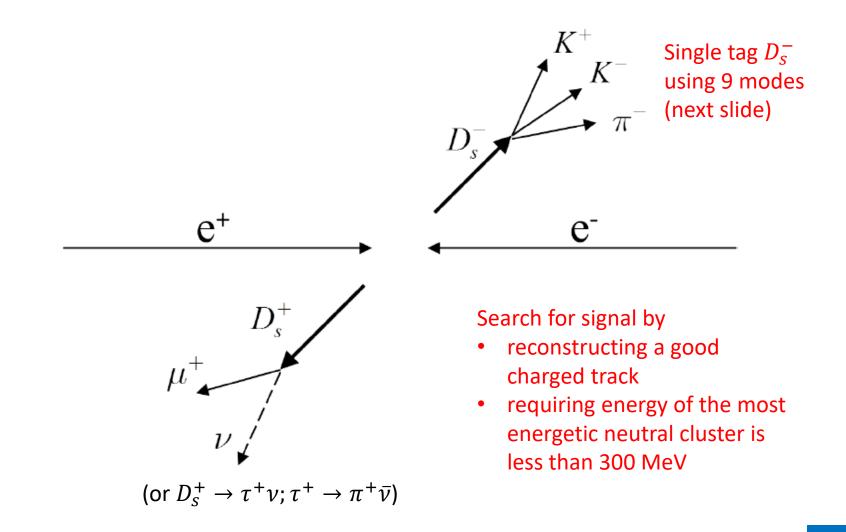


arXiv 1608.06732

Measurement of the branching fractions of $D_s \rightarrow \mu \nu$, $D_s \rightarrow \tau \nu (\tau \rightarrow \pi \overline{\nu})$ and the decay constant f_{D_s}

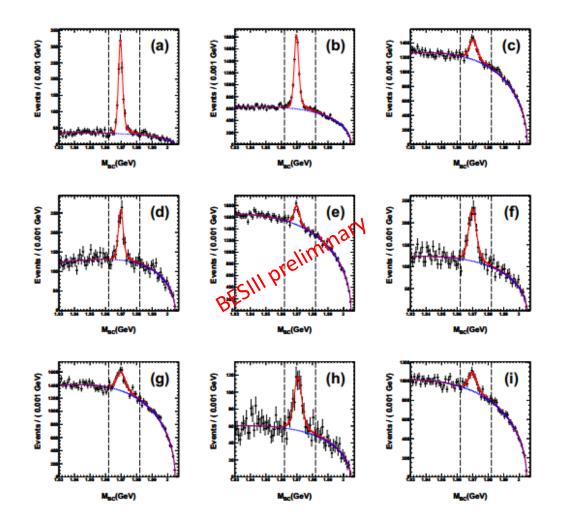
Motivation

There is a rough 2σ difference between experimental measurement and unquenched lattice calculation, which may indicate the possible presence of new physics


Model	f _{Ds} (MeV)
Experimental average of $\mu\nu + \tau\nu$	257.5 ± 4.6
Lattice QCD (PDG 2016)	249.0 ± 1.2

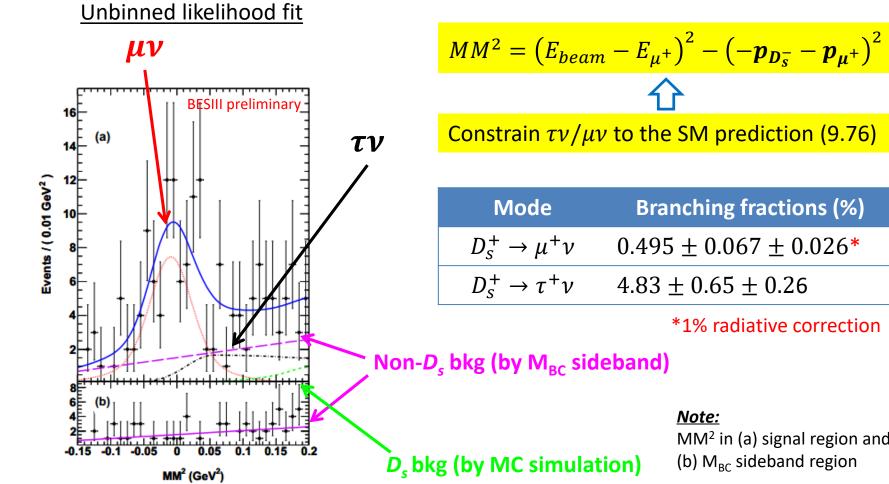
Measure f_{Ds} using 482 pb⁻¹ of e+e- data taken at 4.009 GeV at BESIII

- Clean sample: below the DsDs* production threshold
- Small D_sD_s cross section, ~1/3 of DsDs*'s at 4.17 GeV



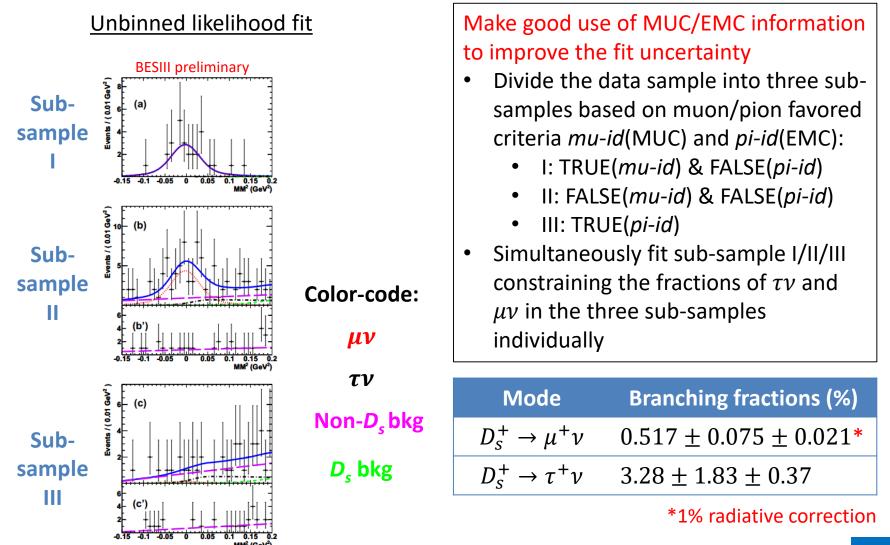
DT method

D_s single tag


15127 ± 312 D_s events in total Mode (a) $\overline{K_{S}^{0}K^{-}}$ (b) $K^+K^-\pi^-$ (c) $K^+ K^- \pi^- \pi^0$ (d) $K_S^0 K^+ \pi^- \pi^-$ (e) $\pi^{+}\pi^{-}\pi^{-}$ (f) $\pi^-\eta$ (g) $\pi^- \pi^0 \eta$ (h) $\pi^- \eta' (\eta' \rightarrow \pi^+ \pi^- \eta)$ (i) $\pi^- \eta' (\eta' \to \pi^+ \pi^- \gamma)$

M_{BC} signal: (1.962, 1982) GeV M_{BC} sideband: (1.946, 1.956) and (1.946, 1.956) GeV

Sept. 7, 2016


SM-constrained fit to MM²

MM² in (a) signal region and (b) M_{BC} sideband region

Non-SM-constrained fit to MM²

Sept. 7, 2016

Systematics

BESIII preliminary

Sources	Constrained measurement Unconstrained measurement				
Sources	$D_s^+ \to \mu^+ \nu_\mu$	$D_s^+ \to \tau^+ \nu_{\tau}$	$D_s^+ \to \mu^+ \nu_\mu$	$D_s^+ \to \tau^+ \nu_{\tau}$	
Number of tags	1.7	1.7	1.7	1.7	
Track finding	1.0	1.0	1.0	1.0	
Extra shower cut	0.5	0.5	0.5	0.5	
$\rm MM^2$ resolution	2.3	2.3	2.5	5.5	
$\rm MM^2$ fitting range	1.2	1.6	1.8	0.3	
Background	4.4	4.4	2.3	9.4	
Signal relative fractions in the three sub-samples	-	-	1.1	1.1	
Radiative correction	1.0	-	1.0	-	
$\mathcal{B}(\tau^+ \to \pi^+ \bar{\nu_\tau})$	-	0.6	-	0.6	
MC statistics	0.5	0.6	0.5	0.6	
Sum	5.6	5.7	4.6	11.2	

For a DT analysis, uncertainties related to ST selection are cancelled

- Due to the low statistics, uncertainties related to the MM² fits make the major contribution to the systematics
- Uncertainty in the radiative correction is taken 100% of Dobrescu and Kronfeld's calculation (<u>PRL 100, 241802 (2008)</u>)

Decay constant f_{Ds}

arXiv 1608.06732

$$f_{D_s^+} = \frac{1}{G_F m_\ell \left(1 - \frac{m_\ell^2}{m_{D_s^+}^2}\right) |V_{cs}|} \sqrt{\frac{8\pi \mathcal{B}(D_s^+ \to \ell^+ \nu_\ell)}{m_{D_s^+} \tau_{D_s^+}}}$$

Experiment	Mode	BF (%)	${f}_{D_{s}^{+}}$ (MeV)
CLEO-c *	μν	$0.565 \pm 0.045 \pm 0.017$	$259 \pm 6.2 \pm 3.0$
BaBar **	μν	$0.602 \pm 0.038 \pm 0.034$	$258.4 \pm 6.4 \pm 7.5$
Belle ***	μν	$0.531 \pm 0.028 \pm 0.020$	$257.8 \pm 4.2 \pm 4.8$
This work (preliminary)	μν	$0.495 \pm 0.067 \pm 0.026$	$241.0 \pm 16.3 \pm 6.6$

Model	${f}_{D_{s}^{+}}$ (MeV)
Lattice (HPQCD)	$246.0 \pm 0.7 \pm 3.5$
Lattice (FNAL + MILC)	246.4 ± 0.5 ± 3.6

* PRD79, 052001 (2009) ** PRD82, 091103 (2010) *** JHEP09, 139 (2013)

Our results are statistical limited.

Compatible with previous experiments & LQCD calculations.

Sept. 7, 2016

CHARM2016, Bologna, Italy

PLB 750, 266 (2015)

Measurement of the branching fractions of $D_s \rightarrow \eta' X$ and $D_s \rightarrow \eta' \rho$

Motivation

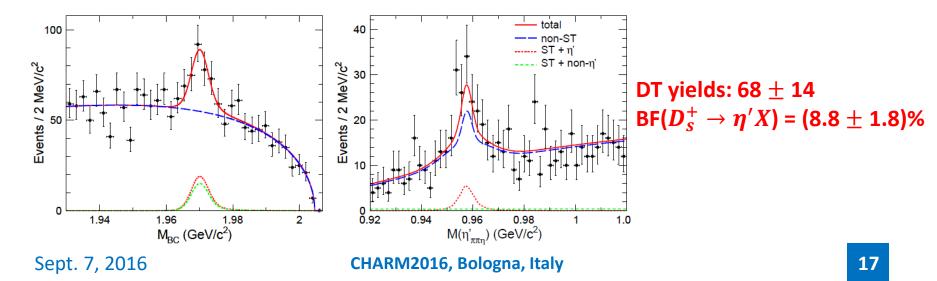
 Hadronic weak decays of charmed mesons provide important information on flavor mixing, CP violation, and strong-interaction effects.

Discrepancy I

- BF($D_s^+ \rightarrow \eta' X$) = Sum[BF($D_s^+ \rightarrow \eta' \rho^+$ + exclusive in PDG)] = (18.6±2.3)%
- BF($D_s^+ \rightarrow \eta' X$) = (11.7±1.8)% (CLEO-c @ Ecm~4.170 GeV <u>PRD79, 112008</u>).

Discrepancy II

- BF($D_s^+ \rightarrow \eta' \rho^+$) = (12.5±2.2)% (CLEO2 @ Ecm~M(Y(4S)), <u>PRD58</u>, <u>052002(1998)</u>)
- A factorization method predicts $BF(D_s^+ \rightarrow \eta' \rho^+) = (3.0 \pm 0.5)\% (\underline{F.S. Yu, et}$ al, PRD84, 074019 (2011))
- We can measure BF($D_s^+ \to \eta' X$) and BF($D_s^+ \to \eta' \rho^+$) at BESIII


Sept. 7, 2016

DT method for $D_s^+ o \eta' X$

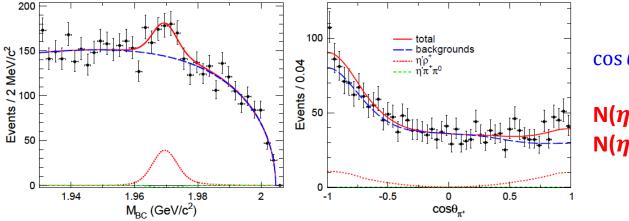
Tag side

- The same to $D_s \rightarrow \mu \nu$
- Signal side
 - Reconstruct $\eta' \to \pi \pi \eta (\eta \to \gamma \gamma)$. If multiple candidates, choose the one with minimum $\Delta M \equiv |M(\pi \pi \eta) m(\eta')|$
 - Peaking background: wrongly reconstructed D_s accompanied by a real η'
 - 2D fit to M_{BC} and $M(\pi\pi\eta)$

ST method for $D_s^+ o \eta' ho^+$

Fully reconstruct $\eta' \rho^+$ final state

- $\eta' \rightarrow \pi \pi \eta (\eta \rightarrow \gamma \gamma)$: no PID for π^+ , 0.943 < M($\pi \pi \eta$) < 0.973 GeV
- $\rho^+ \rightarrow \pi^+ \pi^0 (\pi^0 \rightarrow \gamma \gamma)$: no PID for π^+ , $|M(\pi^+ \pi^0) m(\rho^+)| < 0.17 \text{ GeV}$
- Require -0.035 < |Δ*E*| < 0.023 GeV</p>


🛛 To separate two-body $\eta' ho^+$ from three-body $\eta'\pi^+\pi^0$

- Use helicity angle θ_{π^+} : the angle between the momentum of the π^+ from the ρ^+ decay and the direction opposite to the D_s^+ momentum in the ρ^+ rest frame.
- $D_s^+ \to \eta' \rho^+ : \cos^2 \theta_{\pi^+}$
- $D_s^+ \to \eta' \pi^+ \pi^0$: flat in $\cos \theta_{\pi^+}$

ST method for $D_s^+ o \eta' ho^+$ (cont.)

2D fit to M_{BC} and \cos\theta_{\pi^+}

 $\cos \theta_{\pi^+}$ bkg: M_{BC} sideband

 $N(\eta'
ho^+)$ = 210 \pm 50 $N(\eta' \pi^+ \pi^0)$ = -13 \pm 56

■ Measure the relative BF to cancel out ST systematics ■ $BF(D_s^+ \rightarrow \eta' \rho^+)/BF(D_s^+ \rightarrow K^+ K^- \pi^+) = 1.04 \pm 0.25$

Systematics

Source	$\mathcal{B}(D_s^+ \to \eta' X)$	$\mathcal{B}(D_s^+ \to \eta' \rho^+)$
MDC track reconstruction	2.0	
PID	2.0	3.0
π^0 detection		2.4
η detection	2.7	3.5
ΔE requirement	1.0	1.4
$M(\eta'_{\pi\pi\eta})$ requirement		2.0
$M(\eta'_{\pi\pi\eta})$ backgrounds	1.5	
Peaking backgrounds in ST	0.3	
$M_{\rm BC}$ signal shape	1.0	0.6
$M_{\rm BC}$ fit range	1.7	0.5
$\cos \theta_{\pi \pm}$ backgrounds		2.9
Uncertainty of efficiency	1.6	0.5
Quoted branching fractions	1.7	3.8
Total	5.3	7.5

- π^0 and η detection: estimated from DT $\underline{D^0 \overline{D}^0}, \underline{D^0} \to K^- \pi^+ \pi^0$ in each p bins. The disagreement between data/MC is assumed to be the same for η
- $\cos \theta_{\pi^+}$ background: change the kernel width parameter in the kernelestimated distribution of the background events
- **Quoted branching fractions:** dominated by $BF(D_s^+ \rightarrow K^+K^-\pi^+)$ from CLEOc (<u>*PRD88, 032009(2013)*</u>)

Results

PLB 750, 266 (2015)

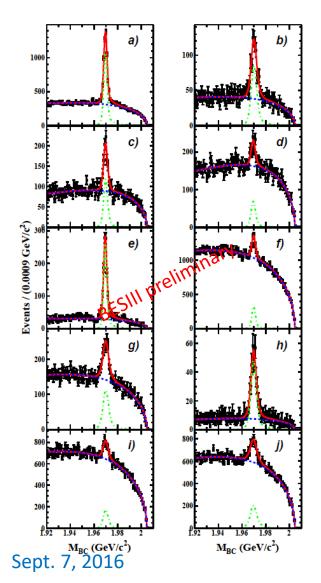
BF($D_s^+ \to \eta' X$) = (8.8 ± 1.8 ± 0.5)%

- Consistent with CLEO-c's $(11.7 \pm 1.8)\%$
- Weighted average of these two: $(10.3 \pm 1.3)\%$
- BF $(D_s^+ \to \eta' \rho^+)$ /BF $(D_s^+ \to K^+ K^- \pi^+)$ = 1.04 \pm 0.25 \pm 0.07
 - Inserting BF($D_s^+ \rightarrow K^+ K^- \pi^+$) from PDG, we get BF($D_s^+ \rightarrow \eta' \rho^+$) = (5.8 $\pm 1.4 \pm 0.4$)%
 - Half CLEO2's old result: (12.5 ± 2.2)%
 - Consist with CLEO-c's new BF($D_s^+ \rightarrow \eta' \pi^+ \pi^0$) (<u>*PRD 88, 032009 (2013)*</u>): (5.6 ± 0.5 ± 0.6)% (include $\eta' \rho^+$)

• Upper limit of non-resonant BF($D_s^+ \rightarrow \eta' \pi^+ \pi^0$) < 5.1% at 90% C.L.

arXiv 1608.06484

Measurements of the branching fractions of $D_s^+ ightarrow \eta^{(\prime)} e^+ \nu$



Motivation

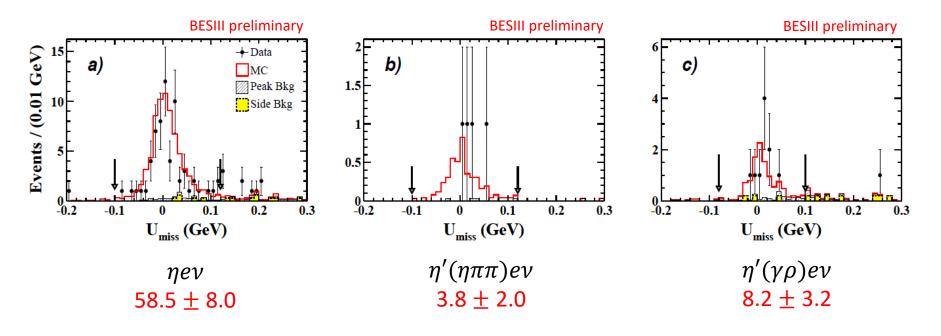
- The semileptonic decays $D_s^+ o \eta^{(\prime)} e \nu$ are important channels for the study of heavy quark decays
- The inclusive semileptonic decay widths of the mesons D⁰, D⁺ and D_s⁺ should be equal, due to SU(3) symmetry breaking and non-factorizable components.
- The measured inclusive semileptonic decay widths of D⁰/D⁺ are consistent, but 20% larger than that from D_s⁺ (> 3σ)
- The Isgur-Scora-Grinstein-Wise form factor model (ISGW2) predicts a difference between the D and Ds+ inclusive semileptonic rates
- The exclusive semileptonic decay rates can provide useful information

D_s single tag

10 tag modes (with additional $K_S^0 K^- \pi^+ \pi^$ compared to the $D_s^+ \rightarrow \mu \nu$ analysis)

Tag Mode		$M_{\rm BC}~({\rm GeV}/c^2)$	$N_{\rm ST}$	$\epsilon_{D_s}^{\mathrm{ST}}$ (%)
$K^+K^-\pi^-$	(-0.020, 0.017)	(1.9635, 1.9772)	4863 ± 95	38.92 ± 0.08
$\phi(K^+K^-)\rho^-$		(1.9603, 1.9821)	616 ± 39	10.05 ± 0.07
$K^0_S K^+ \pi^- \pi^-$	(-0.018, 0.014)	(1.9632, 1.9778)	601 ± 40	23.17 ± 0.16
$K^0_S K^- \pi^+ \pi^-$	(-0.016, 0.012)	(1.9622, 1, 977)	388 ± 52	21.98 ± 0.21
$K_S^0 K^-$	(-0.019, 0.020)	(1.9646(1.9761)	1078 ± 38	44.96 ± 0.20
$\pi^+\pi^-\pi^-$	(-0.026, 0.022)	g¥9634, 1.9770)	1525 ± 116	51.83 ± 0.14
$\eta(\gamma\gamma)\pi^-$	(-0.052, 0.058)	(1.9598, 1.9824)	840 ± 56	47.58 ± 0.24
$\eta'(\eta\pi^+\pi^-)\pi^-$	(-0.025, 0.024)	(1.9604, 1.9813)	333 ± 23	23.02 ± 0.21
$\eta'(\gamma \rho^0)\pi^-$	(-0.041, 0.033)	(1.9618, 1.9790)	1112 ± 106	38.21 ± 0.18
$\eta(\gamma\gamma) ho^-$	(-0.058, 0.041)	(1.9569, 1.9855)	1801 ± 113	24.43 ± 0.10

CHARM2016, Bologna, Italy


Signal side

 $N_{DT} = N_{tot} - N_{bkg}$

 N_{tot} : Count number of events from U_{miss} N_{bkg} : Subtract background events

- Peak bkg: estimated from MC simulation
- Side bkg: estimated from M_{BC} sideband

- ✓ Find a electron, whose confidence level satisfies $\frac{CL_e}{CL_e + CL_\pi + CL_K} < 0.8$
- Reconstruct a η or η' (to ππη or γρ)
- ✓ Energy of the most energetic neutral cluster is less than 300 MeV

CHARM2016, Bologna, Italy

Systematics

		DLJIII	Jenninary
Source	$\eta e^+ \nu_e$	$\eta'(\eta\pi^+\pi^-)e^+\nu_e$	$\eta'(\gamma\rho^0)e^+\nu_e$
Number of ST D_s^-	1.8	1.8	1.8
Tracking for π^+		2.0	2.0
PID for π^+		2.0	2.0
Electron selection	1.2	1.1	1.1
$\eta(\eta')$ reconstruction	2.3	2.5	2.8
$E_{\mathrm{extra}\gamma}^{\mathrm{max}}$ cut	0.5	0.5	0.5
Background	0.5	0.7	0.8
Weighted efficiency	1.9	1.9	1.9
Form factor model	0.6	2.8	0.9
MC statistics	0.4	0.8	0.7
$B(\eta \to \gamma \gamma)$	0.5	0.5	
$B(\eta' \to \eta \pi^+ \pi^-)$		1.6	
$B(\eta' \to \gamma \rho^0)$		_	1.7
$U_{\rm miss}$ requirement	0.3	0.6	0.3
Total	3.9	5.9	5.4

BESIII preliminary

- η/η' reconstruction: estimated from DT $D^0\overline{D}^0$, $D^0 \rightarrow K_S^0\eta$ or $K_S^0\eta'$. The data/MC difference is taken as the uncertainty.
- <u>Weighted efficiency:</u> uncertainty of weighting factors of the efficiency, mostly comes from the ST statistical uncertainty

Branching fraction results

arXiv 1608.06484

$$B(D_s^+ \to \eta(\eta')e^+\nu_e) = \frac{N_{\rm DT}^{\rm net}}{N_{\rm ST}^{\rm tot} \times \epsilon_{D_s^+ \to \eta(\eta')e^+\nu_e} \times B_i}$$

BESIII preliminary

	BESIII	Ref. [7]	Ref. [8]	Ref. [9]	PDG [4]
$B(D_s^+ \to \eta e^+ \nu_e)[\%]$	$2.30 \pm 0.31 \pm 0.09$	—	$2.48 \pm 0.29 \pm 0.13$	$2.28 \pm 0.14 \pm 0.20$	2.67 ± 0.29
$B(D_s^+ \to \eta' e^+ \nu_e) [\%]$	$0.93 \pm 0.30 \pm 0.05$	—	$0.91 \pm 0.33 \pm 0.05$	$0.68 \pm 0.15 \pm 0.06$	0.99 ± 0.23
$\frac{B(D_s^+ \to \eta' e^+ \nu_e)}{B(D_s^+ \to \eta e^+ \nu_e)}$	$0.40 \pm 0.14 \pm 0.02$	$0.35 \pm 0.09 \pm 0.07$	—	_	_

Agree to previous experimental measurements Can be used to determine the $\eta - \eta'$ mixing angle and improve upon the D_s^+ semileptonic branching ratio precision

Ref. [7]: PRL 75, 3804 (1995) (CLEO II) Ref. [8]: PRD 80, 052007 (2009) (CLEO-c) Ref. [9]: PRD 92, 012009 (2015)

PLB 750, 266 (2015)

Other results - D^{*0} branching fractions

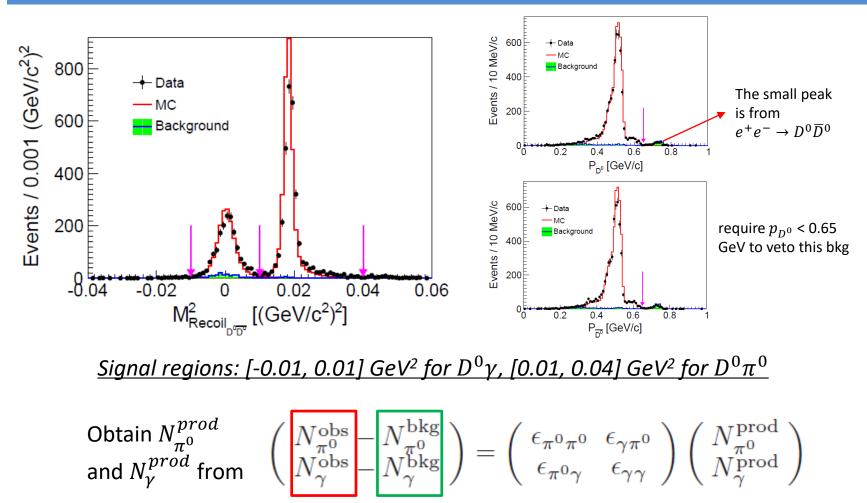
Sept. 7, 2016

Motivation

- Effective models (EMs) are developed to deal with the nonperturbative effects for strong interaction in the low energy regime.
- A precise measurement of the branching fractions will constrain the model parameters and thereby help to improve the EMs.
- The decay branching fractions of D^{*0} to $D^0\pi^0$ and $D^0\gamma$ are also critical input values for many measurements such as the open charm cross sections in e^+e^- annihilation and the semileptonic decays of B^{\pm}
- Average result of previous measurements is of ~8% uncertainty. Our measurement with 482 pb⁻¹ data sample can improve the result significantly.

Event selection

For \sqrt{s} = 4.009 GeV


- No $D^{*0}\overline{D}^{*0}$ production
- Find D^{*0} events from $D^{*0}\overline{D}^0$, assuming D^{*0} only decays to $D^0\pi^0$ and $D^0\gamma$ (the next largest mode $D^0\gamma\gamma \sim 3.3e-5$).
- Reconstruct the $D^0\overline{D}^0$ pair, require the recoil mass to form a π^0 or a photon
- 3 decay modes of D^0 , 5 combinations of $D^0\overline{D}^0$

Mod	e Decay of D^0	Decay of \bar{D}^0
Ι	$D^0 \to K^- \pi^+$	$\bar{D}^0 \to K^+ \pi^-$
II	$D^0 \to K^- \pi^+$	$\bar{D}^0 \to K^+ \pi^- \pi^0$
III	$D^0 \to K^- \pi^+ \pi^0$	$\bar{D}^0 \to K^+\pi^-$
IV	$D^0 \to K^- \pi^+$	$\bar{D}^0 \to K^+\pi^-\pi^+\pi^-$
V	$D^0 \to K^- \pi^+ \pi^+ \pi^-$	$\bar{D}^0 \rightarrow K^+ \pi^-$

- Kinematic fit
 - Constrain D^0/\overline{D}^0 candidate to m(D^0)
 - For π^0 , $|M(\gamma\gamma)-m(\pi^0)| < 15$ MeV. Constrain $M(\gamma\gamma)$ to $m(\pi^0)$
- If multiple candidates survive, choose the one with the smallest χ^2_{KF}

Signal extraction

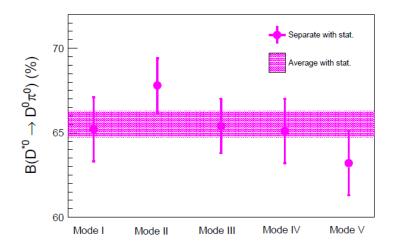
Obtained from signalObtained fromregions in M^2_{recoil} MC simulation

Sept. 7, 2016

CHARM2016, Bologna, Italy

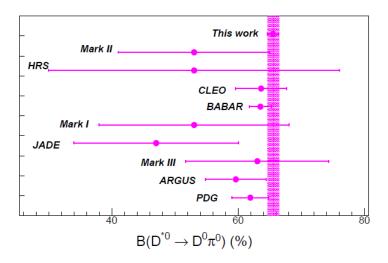
Systematics

Source	(%)
Dividing line between $D^{*0} \to D^0 \pi^0$ and $D^{*0} \to D^0$	γ 0.2
Choice of signal regions	0.2
Kinematic fit	0.2
FSR simulation	0.1
Background	0.2
Statistics of MC samples	0.2
Sum	0.5


- As the branching fractions are obtained from the ratio of $D^0\pi^0$ and $D^0\gamma$ events, uncertainty related to D^0 reconstruction is cancelled
- **FSR simulation:** there are 20% more FSR events with charged pions in data than MC (<u>PRD 84, 091102 (2001)</u>). Correct MC simulation and take the difference as the uncertainty.
- <u>Background</u>: as background is estimated from MC simulation, the uncertainties of the input cross sections in simulation dominate the error.

₿€SШ

Branching fractions


PRD 91, 031101(R) (2015)

$$\mathcal{B}(D^{*0} \to D^0 \pi^0) = \frac{N_{\pi^0}^{\text{prod}}}{N_{\gamma}^{\text{prod}} + N_{\pi^0}^{\text{prod}}}$$

Consistent for the 5 individual mode and their weighted average

Weighted average for the 5 modes: **BF** $(D^{*0} \rightarrow D^0 \pi^0)$ = (65.5 ± 0.8 ± 0.5)%

Our results are consistent with the previous ones and of best precision

Summary

With the 482 pb⁻¹ of data taken at 4.009 GeV, many new results are out for BESIII

- D_s→μν/τν (<u>arXiv 1608.06732</u>)
- D_s →η'X/η'ρ (<u>PLB 750, 266 (2015)</u>)
- $D_s \rightarrow \eta^{(')} ev (arXiv 1608.06484)$
- Other results
 - D^{*0} branching fractions (<u>PRD 91, 031101(R) (2015)</u>)

Look into the future ...

- BESIII has collected 3 fb⁻¹ D_sD_s^{*} data at 4.18 GeV
 - $\sim 15 \times D_s$ statistics to the BESIII 4.009 GeV data
 - $\sim 5 \times D_s$ statistics to the CLEO-c 4.17 GeV data
- More exciting results will be coming out for the coming year!!!