
23 February 2016

Master Integrals technique for multi-loop computations:
the Differential Equations approach.

HiggsTools Journal Club

Elisa Mariani a

a Nikhef,



Physical observables at higher orders: general framework

Perturbative QFT: higher-order corrections

Interactions in the SM can be described by means of Perturbative QFT.

a

b

X

t



Physical observables at higher orders: general framework

Perturbative QFT: higher-order corrections

Interactions in the SM can be described by means of Perturbative QFT.

a

b

X

t

+
a

b

X

t

a

b

X

t

V R



Physical observables at higher orders: general framework

Perturbative QFT: higher-order corrections

Interactions in the SM can be described by means of Perturbative QFT.

a

b

X

t

+
a

b

X

t

a

b

X

t

V R

∫
ddl

∫
ddk NLO



Physical observables at higher orders: general framework

Perturbative QFT: higher-order corrections

Interactions in the SM can be described by means of Perturbative QFT.

a

b

X

t

+
a

b

X

t

a

b

X

t

V R

∫
ddl

∫
ddk NLO

∫
ddl1

∫
ddl2

∫
ddk1

∫
ddk2 NNLO

...

The amount of integrals over real and virtual radiation becomes huge very quickly

with increasing number of loops/legs.
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⇓

MASTER INTEGRALS TECHNIQUE

Why?

It applies to Loop and Phase Space integrals .

Part of the computation is automatized .

How?

1) Reduction of scalar matrix elements to a set of Master Integrals. → FIRE

2) Explicit evaluation of Masters Feynman Calculus.

3) “Cosmetics” and Renormalization of final expressions.
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Differential Equations for MIs

Solving the Masters: possible strategies

Set of MIs {Mi} is a basis in the space of Feynman integrals describing a certain
process.

⇒ They cannot be further reduced and must be solved explicitely.

NUMERICAL METHODS → Sector Decomposition (ask Stephen for more info.. )

ANALYTICAL METHODS

α/Feynman Parameters: E(p,m2) = i
(p2−m2+i0)al

→
∫∞
0

dαl α
al−1
l e i(p

2−m2)al

Mellin-Barnes: 1
(X+Y )λ

→ 1
Γ(λ)

∫∞
−∞

dz Y z

Xλ+z Γ(λ+ z)Γ(−z)

Differential Equations:

1 MIs are functions of the external scales ~s governing the process

~M = (...Mi , ...),⇒ ~M = ~M(~s)

2 They happen to satisfy coupled systems of (P)DEs, which set their dependence
on such scales.
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..solvable in a bottom-up approach!
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Differential Equations for MIs

(Partial) Differential Equations for a set of Master Integrals

Given a set of masters ~M describing a certain process governed by ~s

1) ~MT = {M(1), ...,M(i), ...M(m)}, M(i) = M(i)(~s; ǫ), ~s = {s1, ..., sn}.

2) ∂
∂si

M(j) (~s; ǫ) =
∑

r c
r
ij (~s; ǫ)Ir (~s; ǫ; {a1, ..., am})

3) I (~s; ǫ; {a1, ..., am})
IBPs
=

∑

i ci (~s; ǫ)M
(i) (~s; ǫ)

we can write a system of coupled (partial) D.E. for them











































∂
∂si

M(1) (~s; ǫ) = d j
i1 (~s; ǫ)M

(1) (~s; ǫ) +
∑m

r=1,r 6=1 d
r
i1 (~s; ǫ)M

(r) (~s ; ǫ)

...
∂
∂si

M(j) (~s; ǫ) = d j
ij (~s; ǫ)M

(j) (~s; ǫ) +
∑m

r=1,r 6=j d
r
ij (~s; ǫ)M

(r) (~s; ǫ)

...
∂
∂si

M(m) (~s ; ǫ) = d j
im (~s; ǫ)M(m) (~s; ǫ) +

∑m
r=1,r 6=j d

r
im (~s; ǫ)M(m) (~s; ǫ)

, ∀si ∈ ~s
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Differential Equations: expansion around ǫ → 0

D.E. systems are too complex to be integrated in closed form in ǫ.

Results for MIs need to be expanded around ǫ → 0 ..

⇓

D.E. are directly solved order by order in ǫ.

Example from [b +W ∗ → t]2L

M1 = =? D.E. d
dy

M1(y) =
4(3−(4−2ǫ)(1−y)−4y)M1(y)

4y(1+y)
+ (−8+3(4−2ǫ))M2(y)

4y(1+y)

M2(y) = =
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+
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ǫ
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known!
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1

(y)
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+
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(1)
1

(y)

ǫ
+ m0

1(y) + m
(1)
1 ǫ(y) + m

(2)
1 ǫ2(y) + O(ǫ3)

O(ǫ−2) : d
dy

m
(−2)
t1,1

(y) =
m
(−2)
t4,2

(y)−m
(−2)
t1,1

(y)

ǫ2y(1+y)

O(ǫ−1) : d
dy

m
(−1)
t1,1

(y) =
−6m

(−2)
t4,2

(y)+4m
(−1)
t4,2

(y)+8(1−y)m
(−2)
t1,1

(y)−4m
(−1)
t1,1

(y)

4ǫy(1+y)

O(ǫ0) :... ... integrable with appropriate boundary conditions!
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manifest?
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CANONICAL BASIS EXPANSION BY REGION
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Singularity structure of the solution is

manifest: Ai (~x)
xj→0
≃ 1

xj
ǫ

↓

No spurious divergences in the solution.

ǫ-dependence is factorized from the kine-
matic.

↓

The DE system decouples order by order
in ǫ.

Solution can be written in terms of iterated integrals,

and under certain conditions in terms of Multiple Polylogarithms.
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
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




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(
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+
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(−3)
1
ǫ3
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)

= 4ǫ
1−z

(

m
(−4)
1
ǫ4

+
m
(−3)
1
ǫ3

+ ..

)

+ −6ǫ
z

(

m
(−4)
2
ǫ4

+
m
(−3)
2
ǫ3

+ ..

)

∂z

(

m
(−4)
2
ǫ4

+
m
(−3)
2
ǫ3

+ ..

)

= ǫ
1−z

(

m
(−4)
1
ǫ4

+
m
(−3)
1
ǫ3

+ ..

)

+ −3ǫ
z

(

m
(−4)
2
ǫ4

+
m
(−3)
2
ǫ3

+ ..

)

O(ǫ
−4

) :

{

∂zm
(−4)
1 = 0

∂zm
(−4)
2 = 0

⇒

{

m
(−4)
1 = cost

m
(−4)
2 = cost

O(ǫ
−3

) :















∂z
m
(−3)
1
ǫ3

= 4ǫ
1−z

m
(−4)
1
ǫ4

+ −6ǫ
z

m
(−4)
2
ǫ4

∂z
m
(−3)
2
ǫ3

= ǫ
1−z

m
(−4)
1
ǫ4

+ −3ǫ
z

m
(−4)
2
ǫ4

⇒







m
(−3)
1 =

∫ z
0

4ǫ
1−z′

m
(−4)
1 dz′ +

∫ z
0

−6ǫ
z′

dz′m
(−4)
2

m
(−3)
2 =

∫ z
0

ǫ
1−z′

m
(−4)
1 dz′ +

∫ z
0

−3ǫ
z′

m
(−4)
2 dz′

and so on ...⇒ The system decouples order by order in ǫ
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Conclusion

Higher-order computations imply performing a huge amount of complicated
Feynman integrals

⇒ ad-hoc techniques are required

Master Integrals represent a possibility

MIs in 3 steps

1) Reduction 2) Evaluation 3) Renormalization

A powerful technique for analytic Evaluation is represented by Differential Equations.

Consists in solving systems of PDEs where the Masters are the unknowns

suitable when the Masters have many propagators and the set of MIs is big

becomes relatively easy with more advanced tools, e.g. Canonical Basis

... thank you for your attention.
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NUMERICAL METHOD for Feynman Integrals

Sector Decomposition - Philosophy

Counterterms are needed to integrate numerically divergent integrals

How to construct them when there are overlapping singularities?

I =

∫ 1

0

dx

∫ 1

0

dy x−1−aǫy−bǫ(x + (1 − x)y)−1 =

=

∫ 1

0

dx

∫ 1

0

dyx−1−aǫy−bǫ(x + (1 − x)y)−1 [Θ(x − y) + Θ(y − x)] =

=

∫

1

0

dx x−1−(a+b)ǫ
∫

1

0

dtt−bǫ(1 + (1 − x)t)−1+

+

∫

1

0

dyy−1−(a+b)ǫ
∫

1

0

dt t−1−aǫ(1 + (1 − y)t)−1( Ask Stephen for more info.. )
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