

Hard Probes 2016 Student Lectures September 2016

Jet algorithms and jet substructure

Matteo Cacciari LPTHE Paris Université Paris Diderot

Includes material from Gavin Salam and Grégory Soyez

• Jet algorithms

How jets are made

Background

How to "clean them up"

Jet substructure

What's inside them

Why jets

A jet is something that happens in high energy events: a collimated bunch of hadrons flying roughly in the same direction

We could eyeball the collimated bunches, but it becomes impractical with millions of events

The classification of particles into jets is best done using a **clustering algorithm**

Matteo Cacciari - LPTHE

Why do jets happen?

Gluon emission

$$\int \alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

Non-perturbative physics

 $\alpha_s \sim 1$

Where are jets used?

- ATLAS and CMS have each published 400+ papers since 2010
 - More than half of these papers make use of jets
 - 60% of the searches papers makes use of jets

(Source: INSPIRE. Results may vary when employing different search keywords)

Why are jets so important?

Taming reality

One purpose of a 'jet clustering' algorithm is to reduce the complexity of the final state, simplifying many hadrons to simpler objects that one can hope to calculate

Jets can serve two purposes

- They can be observables, that one can measure and calculate
- They can be **tools**, that one can employ to extract specific properties of the final state

Different clustering algorithms have different properties and characteristics that can make them more or less appropriate for each of these tasks

Jet clustering algorithm

A **jet algorithm** maps the momenta of the final state particles into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, **R**, which controls the extension of the jet

Algorithm + parameter(s) + recombination scheme = jet definition

Jet definitions as projections

Projection to jets should be resilient to QCD effects

Projections are NOT unique: a jet is NOT EQUIVALENT to a parton

2 clear jets

3 jets?

2 clear jets

3 jets? or 4 jets?

Gavin Salam (CERN)

QCD basics 4

Reconstructing jets must respect rules

Perturbative calculations of jet observables will only be possible with **collinear (and infrared) safe** jet definitions

Two main classes of jet algorithms Sequential recombination algorithms (also called hierarchical agglomerative clustering algs.) Bottom-up approach: combine particles starting from **closest ones** How? Choose a **distance measure**, iterate recombination until few objects left, call them jets Works because of mapping closeness \Leftrightarrow QCD divergence Examples: Jade, kt, Cambridge/Aachen, anti-kt, Usually trivially made IRC safe, but their algorithmic complexity scales like N^{3} .

Modern implementations are fast however.

Cone algorithms

Top-down approach: find coarse regions of energy flow.

How? Find **stable cones** (i.e. their axis coincides with sum of momenta of particles in it) Works because QCD only modifies energy flow on small scales Examples: JetClu, MidPoint, ATLAS cone, CMS cone, SISCone.....

Can be programmed to be fairly fast, at the price of being complex and often IRC unsafe (except SISCone)

A little history

- Cone-type jets were introduced first in QCD in the 1970s (Sterman-Weinberg '77)
- In the 1980s cone-type jets were adapted for use in hadron colliders (SppS, Tevatron...) → iterative cone algorithms
- LEP was a golden era for jets: new algorithms and many relevant calculations during the 1990s
 - Introduction of the 'theory-friendly' kt algorithm
 - sequential recombination type algorithm, IRC safe
 - it allows for all order resummation of jet rates
 - Several accurate calculations in perturbative QCD of jet properties: rates, jet mass, thrust,

e⁺e⁻ k_t (Durham) algorithm

[Catani, Dokshitzer, Olsson, Turnock, Webber '91]

Distance:
$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{Q^2}$$

In the collinear limit, the numerator reduces to the **relative transverse momentum** (squared) of the two particles, hence the name of the algorithm

- Find the minimum y_{min} of all y_{ij}
- If y_{min} is below some jet resolution threshold y_{cut}, recombine i and j into a single new particle ('pseudojet'), and repeat
- If no $y_{min} < y_{cut}$ are left, all remaining particles are jets

e⁺e⁻ k_t (Durham) algorithm in action

Jet Fraction ی OPAL (91 GeV) 2-jet Durham 2-jet 0.6 3-jet 4-iet 5-iet 0.4 HERWIG 3-jet 0.2 4-jet 5-jet 10 ⁻⁴ 10⁻² 10 ⁻¹ 10⁻³ y_{cut}

Characterise events in terms of number of jets (as a function of y_{cut})

Note that the **same** event can be seen to have **different** number of jets according to the value of y_{cut}

Resummed calculations for distributions of y_{cut} doable with the k_t algorithm

e⁺e⁻ k_t (Durham) algorithm v. QCD

kt is a sequential recombination type algorithm

One key feature of the k_t algorithm is its relation to the structure of QCD divergences:

$$\frac{dP_{k\to ij}}{dE_i d\theta_{ij}} \sim \frac{\alpha_s}{\min(E_i, E_j)\theta_{ij}}$$

The y_{ij} distance is the inverse of the emission probability

The kt algorithm roughly inverts the QCD branching sequence (the pair which is recombined first is the one with the largest probability to have branched)

The history of successive clusterings has physical meaning

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

▶ Number of final state particles much larger (order 10³)

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

▶ Number of final state particles much larger (order 10³)

Many higher order calculations (NLO, NNLO) available

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

▶ Number of final state particles much larger (order 10³)

Many higher order calculations (NLO, NNLO) available

Presence of background (underlying event and pileup)

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

▶ Number of final state particles much larger (order 10³)

Many higher order calculations (NLO, NNLO) available

Presence of background (underlying event and pileup)

Jets often initiated by a large-momentum heavy particle

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

- Number of final state particles much larger (order 10³)
 needs a fast algorithm
- Many higher order calculations (NLO, NNLO) available

Presence of background (underlying event and pileup)

Jets often initiated by a large-momentum heavy particle

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

- Number of final state particles much larger (order 10³)
 needs a fast algorithm
- Many higher order calculations (NLO, NNLO) available
 needs an IRC-safe algorithm
- Presence of background (underlying event and pileup)

Jets often initiated by a large-momentum heavy particle

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

- Number of final state particles much larger (order 10³)
 needs a fast algorithm
- Many higher order calculations (NLO, NNLO) available
 needs an IRC-safe algorithm
- Presence of background (underlying event and pileup)
 needs small/known susceptibility and/or ability to subtract background
- Jets often initiated by a large-momentum heavy particle

The LHC environment differs from the LEP one (and even the Tevatron) under many respects

- Number of final state particles much larger (order 10³)
 needs a fast algorithm
- Many higher order calculations (NLO, NNLO) available
 needs an IRC-safe algorithm
- Presence of background (underlying event and pileup)
 needs small/known susceptibility and/or ability to subtract background
- ▶ Jets often initiated by a large-momentum heavy particle
 ▶ needs capability to distinguish boosted objet jet from QCD jet

hadron-collider kt algorithm

Two parameters, **R** and **p**_{t,min}

(These are the two parameters in essentially every widely used hadron-collider jet algorithm)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Sequential recombination algorithm

- 1. Find smallest of d_{ij} , d_{iB}
- 2. If ij, recombine them
- 3. If *iB*, call i a jet and remove from list of particles
- 4. repeat from step 1 until no particles left Only use jets with $p_t > p_{t,min}$

Catani, Dokshitzer, Seymour & Webber, 1993

Inclusive kt algorithm

S.D. Ellis & Soper, 1993

The kt algorithm and its siblings

 $d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$ $d_{iB} = p_{ti}^{2p}$

$\mathbf{p} = \mathbf{I}$ k_t algorithm

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

The kt algorithm and its siblings

 $d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{D^2}$ $d_{iB} = p_{ti}^{2p}$

 $\mathbf{p} = \mathbf{I} \quad \mathbf{k}_{t} \text{ algorithm}$

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

p = **0** Cambridge/Aachen algorithm

Y. Dokshitzer, G. Leder, S. Moretti and B. Webber, JHEP 08 (1997) 001 M. Wobisch and T. Wengler, hep-ph/9907280

The kt algorithm and its siblings

 $d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{D^2}$ $d_{iB} = p_{ti}^{2p}$

p = k_t algorithm S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

p = 0 Cambridge/Aachen algorithm Y. Dokshitzer, G. Leder, S.Moretti and B. Webber, JHEP 08 (1997) 001 M.Wobisch and T.Wengler, hep-ph/9907280

p = - I anti-k_t algorithm

MC, G. Salam and G. Soyez, arXiv:0802.1189

In anti-kt pairs with a **hard** particle will cluster first: if no other hard particles are close by, the algorithm will give **perfect cones** Quite ironically, a sequential recombination algorithm is the 'perfect' cone algorithm

IRC safety of generalised-kt algorithms

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2} \qquad d_{iB} = p_{ti}^{2p}$$

p > 0

New **soft** particle $(p_t \rightarrow 0)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets New **collinear** particle $(\Delta y^2 + \Delta \Phi^2 \rightarrow 0)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

p = 0

New **soft** particle $(p_t \rightarrow 0)$ can be new jet of zero momentum \Rightarrow no effect on hard jets New **collinear** particle $(\Delta y^2 + \Delta \Phi^2 \rightarrow 0)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

p < 0

New **soft** particle $(p_t \rightarrow 0)$ means $d \rightarrow \infty \Rightarrow$ clustered last or new zero-jet, no effect on hard jets New **collinear** particle $(\Delta y^2 + \Delta \Phi^2 \rightarrow 0)$ means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

	IRC safe algorithms		
kt	$SR d_{ij} = min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2 / R^2 hierarchical in rel p_t$	Catani et al '91 Ellis, Soper '93	NInN
Cambridge/ Aachen	$SR \\ d_{ij} = \Delta R_{ij}^2 / R^2 \\ hierarchical in angle$	Dokshitzer et al '97 Wengler, Wobish '98	NInN
anti-k _t	$SR \\ d_{ij} = \min(p_{ti}^{-2}, p_{tj}^{-2}) \Delta R_{ij}^{2}/R^{2} \\ gives perfectly conical hard jets$	MC, Salam, Soyez '08 (Delsart, Loch)	N ^{3/2}
SISCone	Seedless iterative cone with split-merge gives 'economical' jets	Salam, Soyez '07	N ² InN
'second-generation' algorithms All are available in FastJet, <u>http://fastjet.fr</u> (As well as many IRC unsafe ones)			

Background Many 'things' can be clustered into (or lost from) a jet other than what we want (typically, perturbative radiation from a parton)

Ideally we'd like to be able to correct for these effects

Pileup

78-vertices event from CMS

https://cds.cern.ch/record/1479324

Pileup can deposit several tens of GeV (or even hundreds, in a heavy ion collision) into a medium-sized jet

Matteo Cacciari - LPTHE
Hard jets and background

How are the hard jets modified by the background?

Susceptibility (how much bkgd gets picked up)

Jet areas

Resiliency (how much the original jet changes)

Backreaction

Anti-kt jets and background

Anti-kt jets maximise resiliency, and their regular shapes makes them easier to correct for detector-related • effects

Default choice of all LHC collaborations

"How (much) a jet changes when immersed in a background"

Without background

"How (much) a jet changes when immersed in a background"

Without background

"How (much) a jet changes when immersed in a background"

Without background

With background

"How (much) a jet changes when immersed in a background"

Without background

With background

Anti-kt jets are much more resilient to changes from background immersion

(NB. Backreaction is a minimal issue in pp background and at large pt. Can be much more important in Heavy Ion collisions)

Hard jets and background

Modifications of the hard jet

Jet areas

Jet **areas**, graphically represented by the coloured regions, represent the **susceptibility** of each jet to contamination from **diffuse, soft radiation**

Given an IRC-safe jet algorithm, jet areas can be calculated numerically for each jet, opening the way for a jet-by-jet, rather than average, correction for background contamination

Background subtraction

Observable level

- Determination of susceptibility to contamination of each specific observable needed
- Possibility to get unbiased subtraction by construction
- Basic example: transverse momentum $p_t^{sub} = p_t^{raw} - \rho A$ (MC, Salam 0707.1378)
- Other examples:
 - Analytical calculations of susceptibility for selected jet shapes (Sapeta et al. 1009.1143, Alon et al. 1101.3002)
 - Moments of jet fragmentation functions (MC, Quiroga, Salam, Soyez, 1209.6086)
 - Generic (numerical) approach to susceptibility determination for any shape (Soyet et al, 1211.2811)

Event (= particle) level

Background subtraction

Observable level

- Determination of susceptibility to contamination of each specific observable needed
- Possibility to get unbiased subtraction by construction
- Basic example: transverse momentum $p_t^{sub} = p_t^{raw} - \rho A$ (MC, Salam 0707.1378)
- Other examples:
 - Analytical calculations of susceptibility for selected jet shapes (Sapeta et al. 1009.1143, Alon et al. 1101.3002)
 - Moments of jet fragmentation functions (MC, Quiroga, Salam, Soyez, 1209.6086)
 - Generic (numerical) approach to susceptibility determination for any shape (Soyet et al, 1211.2811)

Event (= particle) level

- The event is modified before calculating observables (jets, shapes, etc)
- Method not naturally unbiased, but can often be tuned
- Final dispersion potentially lower, as effective number of particles usually reduced
- Examples:
 - CMS Voronoi method (Lai, unpubl.)
 - Cleansing (Krohn, Schwartz, Low, Wang, 1309.4777)
 - Constituent Subtraction (Berta, Spousta, Miller, Leitner, 1403.3108)
 - PUPPI (Bertolini, Harris, Low, Tran, unpubl.)
 - SoftKiller (MC, Salam, Soyez, 1407.0408)
 - ▶ ..

Background subtraction: jet-based

Correction of a jet transverse momentum

$p_T^{\text{hard jet, corrected}} = p_T^{\text{hard jet, raw}} - \rho \times \text{Area}_{\text{hard jet}}$

MC, Salam, 0707.1378

If ρ is measured on an event-by-event basis, and each jet subtracted individually, this procedure will remove many fluctuations and generally improve the resolution of, say, a mass peak

$$\Delta p_t = \rho A \pm (\sigma \sqrt{A} + \sigma A + \rho \sqrt{\langle A^2 \rangle - \langle A \rangle^2}) + \Delta p_t^{BR}$$

Irreducible fluctuations: uncertainty of the subtraction

Needs two ingredients: ρ and A_{jet}

Numerical jet shape correction

Soyez et al. 1211.2811

A generic **jet shape** (a function of the momenta of all constituents of a jet) is modified by the addition of pileup

Correct it by calculating numerically the derivatives that enter its Taylor expansion and subtracting (this generalises the jet area/median subtraction for transverse mom.)

An event: particle level

Soft Killer introduces a particle momentum cut such that the median momentum density (ρ) of the event is zero

Soft Killer

Half of the event is empty $\Rightarrow \rho = 0$ (because it's the median)

NB. SK needs tuning of the size of the patches used to calculate ρ . 0.4 was found to be a good choice for R=0.4 jets

Soft Killer performance

l/σ dσ/dΔp_t [GeV⁻¹]

38

Soft Killer performance

Many jet shapes:

- ▶ jet mass
- kt clustering scale
- jet width (= broadening, = girth)
- energy-energy correlation moment
- T₂₁ and T₃₂ N-subjettiness ratios

- Biases under control
- Dispersions smaller than with other methods

Jet substructure

Not all jets are created equal

For instance, you may want to be able to tell

Or, more generally, you may want to be able to tell something about how the jet originated (e.g. quark/gluon discrimination, quenching,)

How to 'look' inside a jet?

- Use the clustering history of a 'physical' hierarchical clustering algorithm
- Define jet shape-variables sensitive to specific distribution of radiation inside the jet
- Literally 'look' at the distribution of radiation inside the jet (machine-learning techniques)

Tagging and Grooming

- The substructure of a jet can be exploited to
 - **tag** a particular structure inside the jet, i.e. a massive particle
 - ▶ First examples: Higgs (2-prong decay), top (3-prong decay)
 - remove background contamination from the jet or its components, while keeping the bulk of the perturbative radiation (often generically denoted as grooming)
 - ► First examples: filtering, trimming, pruning

To understand how we need to recall how a sequential recombination algorithm works

Dendrogram

Used to represent graphically the sequence of clustering steps in a sequential recombination algorithm

Order of clustering here is 1,2,3,4

The clustering sequence is 4-5 (1), 2-3 (2), 23-45 (3), 1-2345 (4)

First try

anti-kt

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

Anti- k_t gradually makes its way through the secondary blob \rightarrow no clear identification of substructure associated with 2nd parton.

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

Anti- k_t gradually makes its way through the secondary blob \rightarrow no clear identification of substructure associated with 2nd parton.

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

Anti- k_t gradually makes its way through the secondary blob \rightarrow no clear identification of substructure associated with 2nd parton.

Second try

kt

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

This meant it was the first algorithm to be used for jet substructure.

Seymour '93 Butterworth, Cox & Forshaw '02

Splittings and distances

Invariant mass:

$$m^{2} \simeq p_{ti} p_{tj} \Delta R_{ij}^{2} = (1-z) z p_{t}^{2} \Delta R_{ij}^{2}$$
$$d_{ij} \stackrel{(\text{Ptj} \leq \text{Ptj})}{=} z^{2} p_{t}^{2} \Delta R_{ij}^{2} \simeq \frac{z}{1-z} m^{2}$$

k_t distance:

For a given mass, the **background** (parton shower) will have smaller distance d_{ij} than the **signal** (symmetric $I \rightarrow 2$ decay), i.e. it will tend to **cluster earlier** in the k_t algorithm

Potential tagger: last clustering in kt algorithm

This is where the hierarchy of the k_t algorithm becomes relevant. QCD radiation is clustered first, and only at the end the symmetric, large-angle splittings due to decays are reclustered

Third try

Cambridge/Aachen

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

The interesting substructure is buried inside the clustering sequence — it's less contamined by soft junk, but needs to be pulled out with special techniques

Butterworth, Davison, Rubin & GPS '08 Kaplan, Schwartz, Reherman & Tweedie '08 Butterworth, Ellis, Rubin & GPS '09 Ellis, Vermilion & Walsh '09

Hierarchical substructure

Slide by

Hierarchical substructure

Slide by Gavin Salam

The IRC safe algorithms

	Speed	Regularity	UE contamination	Backreaction	Hierarchical substructure
kt	000	\frown	\mathbf{T}		☺ ☺
Cambridge /Aachen	000	Ţ	\frown		000
anti-k _t	000	00	♣/ ☺	☺ ☺	×
SISCone	©	•	00		×

Array of tools with different characteristics. Pick the right one for the job

Matteo Cacciari - LPTHE

Hard Probes - Wuhan - September 2016

'Jet substructure' papers in INSPIRE

Number of papers containing the words 'jet substructure'

15. Jet substructure as a new Higgs search channel at the LHC. Jonathan M. Butterworth, Adam R. Davison (University Coll. London), Mathieu Rubin, Gavin P. Salam (Paris, LPTHE). Published in Phys.Rev.Lett. 100 (2008) 242001 e-Print: arXiv:0802.2470 [hep-ph]

$PP \rightarrow ZH \rightarrow v\bar{v}b\bar{b}$ The BDRS tagger/groomer

Butterworth, Davison, Rubin, Salam, 2008

A two-prong tagger/groomer for boosted Higgs, which

- Uses the **Cambridge/Aachen** algorithm (because it's 'physical')
- Employs a Mass-Drop condition, as well as an asymmetry cut to find the relevant splitting (i.e. 'tag' the heavy particle)
- Includes a post-processing step, using 'filtering' (introduced in the same paper) to clean as much as possible the resulting jets of UE contamination ('grooming')

BDRS: tagging

 \rightarrow ZH $\rightarrow v\bar{v}bb$ PP

BDRS: tagging

ZH → vvbb

BDRS: tagging

 $pp \rightarrow ZH \rightarrow vvbb$

[NB. Parameters used $\mu = 0.67$ and $y_{cut} = 0.09$]

BDRS: filtering

 \rightarrow ZH \rightarrow vvbb PP

Start with the recombined jet

BDRS: filtering

$pp \rightarrow ZH \rightarrow vvbb$

BDRS: filtering

 \rightarrow ZH \rightarrow vvbb PP

The low-momentum stuff surrounding the hard particles has been removed

Visualisation of BDRS

$pp \rightarrow ZH \rightarrow v\bar{v}b\bar{b}$

Butterworth, Davison, Rubin, Salam, 2008

Cluster with a large R

Undo the clustering into subjets, until a large asymmetry/mass drop is observed: tagging step Re-cluster with smaller R, and keep only 3 hardest jets: grooming step

First taggers/groomers

Mass Drop + Filtering

Butterworth, Davison, Rubin, Salam, 2008

Decluster with mass drop and asymmetry conditions Recluster constituents into subjets at distance scale R_{filt}, retain n_{filt} hardest subjets

Jet 'trimming'

Krohn, Thaler, Wang, 2009

Recluster constituents into subjets at distance scale R_{trim} , retain subjets with $p_{t,subjet} > \epsilon_{trim} p_{t,jet}$

Jet 'pruning'

S. Ellis, Vermilion, Walsh, 2009

While building up the jet, discard softer subjets when $\Delta R > R_{prune}$ and min(pt1,pt2) < ϵ_{prune} (pt1+pt2)

> Aim: limit contamination from QCD background while retaining bulk of perturbative radiation

Trimming and pruner are a priori groomers, but can become taggers when combined with an invariant mass window test (if you can groom away everything then there's no heavy particle in the jet)

Soft Drop declustering

Larkoski, Marzani, Soyez, Thaler, 2014

Decluster and drop softer constituent unless Soft Drop Condition: $\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$

i.e. remove wide-angle soft radiation from a jet

The paper contains

- \checkmark analytical calculations and comparisons to Monte Carlos
- \checkmark study of effect of non-perturbative corrections
- \checkmark performance studies

The jet substructure maze

Alternatives to hierarchical substruct.

- If what we are interested in is the structure of the constituents of a jet, the "jet" itself is not the most important feature.
- A different algorithm, or simply the study of the constituents in a certain patch will also do. Selected alternatives are:
 - ▶ Use of jet-shapes to characterise certain features
 - e.g. *N-subjettiness*: how many subjets a jets appears to have

Thaler, van Tilburg, 2011

- Alternative ways of clustering
 - e.g. Qjets: the clustering history not deterministic, but controlled by random probabilities of merging. Can be combined with, e.g. pruning

Ellis, Hornig, Roy, Krohn, Schwartz, 2012

- ▶ Use information from matrix element
 - e.g. shower deconstruction: use analytic shower calculations to estimate probability that a certain configuration comes from signal or from background
- Use event shapes mimicking jet properties
 - e.g. JetsWithoutJets, mimicking trimming

Bertolini, Chen, Thaler, 2013

N-subjettiness

Thaler, van Tilburg, 2010

$$\tau_{N}^{(\beta)} = \sum_{i} p_{Ti} \min \left\{ R_{1,i}^{\beta}, R_{2,i}^{\beta}, \dots, R_{N,i}^{\beta} \right\}$$

Sum over constituents of a jet Distances to axes of N subjets

 T_N measures departure from N-parton energy flow: if a jet has N subjets, T_{N-1} should be much larger than T_N

N-subjettiness

Thaler, van Tilburg, 2010

0

Larkoski, Salam, Thaler 2013

Energy correlation functions Probes of N-prong structures without requiring identification of subjets

$$ECF(N,\beta) = \sum_{i_1 < i_2 < \dots < i_N \in J} \left(\prod_{a=1}^N p_{T_{i_a}}\right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^N R_{i_b i_c}\right)^{\beta}$$

Angular (y-φ) distances between constituents

ECF(N+1) is zero if there are only N particles

More generally, if there are N subjets one expects ECF(N+1) to be much smaller than ECF(N) [because radiation will be mainly soft/collinear to subjets]

Larkoski, Salam, Thaler 2013

Discriminators

$$r_N^{(\beta)} \equiv \frac{\mathrm{ECF}(N+1,\beta)}{\mathrm{ECF}(N,\beta)}$$

small for N prongs: if N hard partons, small if radiation only soft-collinear

$$C_N^{(\beta)} \equiv \frac{r_N^{(\beta)}}{r_{N-1}^{(\beta)}} = \frac{\text{ECF}(N+1,\beta) \text{ECF}(N-1,\beta)}{\text{ECF}(N,\beta)^2}$$

A jet with a **small** C_N is more likely to have N prongs and at most soft/coll radiation

Note different values of β (chosen to maximise discriminating power)

Conclusions part I

- A number of different IRC-safe jet algorithms exist
 - They all try to be good proxies for hard partons, but they have different characteristics, especially with respect to soft particles
- Jets from all algorithms inevitably suffer from pileup contamination
 - Techniques exist to subtract it, either at jet-level, or at particle-level
- Both the jet algorithms and many pileup subtraction techniques are packaged either in FastJet or in fjcontrib contributions
 - Use of standard algorithms and packages (either directly or through interfaces) should be privileged, as it ensures reproducibility

http://fastjet.fr

http://fastjet.hepforge.org/contrib/

Conclusions part 2

The big news of the past few years has been the emergence of jet-based taggers and groomers, and more generally of jet substructure studies

- They have proven their worth in 'Standard Model' analyses
- They are being implemented in BSM searches
- They are being used in heavy ions physics to probe the details of the parton splittings taking place in quenched jets