
Hard Probes 2016 
Student Lectures
 September 2016

Jets
Jet algorithms and jet substructure

Matteo Cacciari
LPTHE Paris

Université Paris Diderot

Includes material from 
Gavin Salam and Grégory Soyez



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016

Outline

2

‣Jet algorithms

‣How jets are made

‣Background

‣How to “clean them up”

‣Jet substructure

‣What’s inside them
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Why jets

3

A jet is something that happens 
in high energy events: 

a collimated bunch of hadrons 
flying roughly in the 

same direction

We could eyeball the collimated 
bunches, but it becomes impractical 

with millions of events

The classification of particles into jets is best done 
using a clustering algorithm
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Why do jets happen?

4
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Where are jets used?

5

‣ ATLAS and CMS have each published 400+ papers since 2010
‣ More than half of these papers make use of jets
‣ 60% of the searches papers makes use of jets

(Source: INSPIRE. 
Results may vary when 

employing different search 
keywords)

Plot by G. Salam



Why are jets so important?
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Taming reality

7

QCD predictions Real data

??

Jets

One purpose of a ‘jet clustering’ algorithm is to
reduce the complexity of the final state, simplifying many hadrons 

to simpler objects that one can hope to calculate

Multileg + PS
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Jets

821

Jets can serve two purposes

‣ They can be observables, that one can measure 
and calculate

‣ They can be tools, that one can employ to extract 
specific properties of the final state

Different clustering algorithms have different properties and characteristics 
that can make them more or less appropriate for each of these tasks
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Jet clustering algorithm

9

{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets

A jet algorithm maps the momenta of the final state particles 
into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, R, 
which controls the extension of the jet

Algorithm + parameter(s) + recombination scheme = jet definition
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Jet definitions as projections

10

Projections are NOT unique: 
a jet is NOT EQUIVALENT to a parton
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Reconstructing jets is an ambiguous task

7

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets?
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Reconstructing jets is an ambiguous task

8

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets? 
or 4 jets?
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Reconstructing jets must respect rules

13

Perturbative calculations of jet observables 
will only be possible with 

collinear (and infrared) safe jet definitions
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Two main classes of jet algorithms

14

‣ Sequential recombination algorithms 
(also called hierarchical agglomerative clustering algs.)
 Bottom-up approach: combine particles starting from closest ones 

         How? Choose a distance measure, iterate recombination until     
                     few objects left, call them jets

Works because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..

‣ Cone algorithms
  Top-down approach: find coarse regions of energy flow. 

        How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint,  ATLAS cone, CMS cone, SISCone…...

Usually trivially made IRC safe, but their 
algorithmic complexity scales like N3.

Modern implementations are fast however.

Can be programmed to be fairly fast, at the  price of 
being complex and often IRC unsafe (except SISCone)
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A little history

15

‣Cone-type jets were introduced first in QCD in the 1970s 
(Sterman-Weinberg ’77)

‣In the 1980s cone-type jets were adapted for use in hadron 
colliders (SppS, Tevatron...) ➙ iterative cone algorithms

‣LEP was a golden era for jets: new algorithms and many 
relevant calculations during the 1990s
‣ Introduction of the ‘theory-friendly’ kt algorithm

‣  sequential recombination type algorithm, IRC safe
‣  it allows for all order resummation of jet rates

‣Several accurate calculations in perturbative QCD of jet 
properties: rates, jet mass, thrust, ....
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e+e- kt (Durham) algorithm

16

Distance:

In the collinear limit, the numerator reduces to the relative transverse 
momentum (squared) of the two particles, hence the name of the algorithm

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

‣ Find the minimum ymin of all yij

‣ If ymin is below some jet resolution threshold ycut, recombine i and j 
into a single new particle (‘pseudojet’), and repeat

‣ If no ymin < ycut are left, all remaining particles are jets
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e+e- kt (Durham) algorithm in action 

17

Characterise events 
in terms of number of jets 

(as a function of ycut)

Resummed calculations for distributions of ycut doable with the kt algorithm

2-jet

3-jet

4-jet

5-jet

Note that the same event can be 
seen to have different number of 
jets according to the value of ycut
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e+e- kt (Durham) algorithm v. QCD

18

One key feature of the kt 
algorithm is its relation to the 
structure of QCD divergences:

kt is a sequential recombination type algorithm

The yij distance is the inverse of the emission probability

‣The kt algorithm roughly inverts the QCD branching sequence 
(the pair which is recombined first is the one with the largest 
probability to have branched)

‣The history of successive clusterings has physical meaning
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Jet challenges at the LHC 

19

The LHC environment differs from the LEP one 
(and even the Tevatron) under many respects
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Jet challenges at the LHC 
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The LHC environment differs from the LEP one 
(and even the Tevatron) under many respects

‣ Number of final state particles much larger (order 103)
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Jet challenges at the LHC 

19

The LHC environment differs from the LEP one 
(and even the Tevatron) under many respects

‣ Number of final state particles much larger (order 103)

‣ Many higher order calculations (NLO, NNLO) available

‣ Presence of background (underlying event and pileup)

‣ Jets often initiated by a large-momentum heavy particle

➙ needs a fast algorithm

➙ needs an IRC-safe algorithm

➙ needs small/known susceptibility 
and/or ability to subtract background

➙ needs capability to distinguish 
boosted objet jet from QCD jet
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hadron-collider kt algorithm

Two parameters, R and pt,min 
(These are the two parameters in essentially every widely 
used hadron-collider jet algorithm)

Sequential recombination algorithm
1. Find smallest of dij, diB 

2.  If ij, recombine them 
3.  If iB, call i a jet and remove from list of particles 
4.  repeat from step 1 until no particles left 

 Only use jets with pt > pt,min

13

Inclusive kt algorithm
S.D. Ellis & Soper, 1993 

Catani, Dokshitzer, Seymour & Webber, 1993

dij = min(p2ti, p
2
tj)

�R2
ij

R2
, �R2

ij = (yi � yj)
2 + (�i � �j)

2
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The kt algorithm and its siblings

21

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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The kt algorithm and its siblings

21

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001

M. Wobisch and T. Wengler, hep-ph/9907280

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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The kt algorithm and its siblings

21

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001

M. Wobisch and T. Wengler, hep-ph/9907280

p = -1  anti-kt algorithm MC, G. Salam and G. Soyez, arXiv:0802.1189

In anti-kt pairs with a hard particle will cluster first: if no other 
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safety of generalised-kt algorithms

22

p > 0
New soft particle (pt →0) means that d → 0   ⇒  clustered first, no effect on jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p = 0
New soft particle (pt →0) can be new jet of zero momentum ⇒  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p < 0
New soft particle (pt →0) means d →∞  ⇒  clustered last or new zero-jet,  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safe algorithms

23

kt

SR
dij = min(pti2,ptj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(pti-2,ptj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

All are available in FastJet, http://fastjet.fr
‘second-generation’ algorithms

(As well as many IRC unsafe ones)

http://fastjet.fr
http://fastjet.fr
http://fastjet.fr


kt Cam/Aa

SISCone anti-kt



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016

Background

25

Many ‘things’ can be clustered into (or lost from) a jet 
other than what we want (typically, perturbative 

radiation from a parton)

Ideally we’d like to be able to correct for these effects
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Pileup

26

78-vertices event 
from CMS

https://cds.cern.ch/record/1479324

Pileup can deposit several tens of GeV (or even 
hundreds, in a heavy ion collision) into a medium-sized jet
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Hard jets and background

27

Susceptibility 
(how much bkgd gets picked up) 

Resiliency 
(how much the original jet changes) 

How are the hard jets 
modified by the background?

Jet areas

Backreaction
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Anti-kt jets and background

28

Anti-kt jets maximise 
resiliency, and their regular 

shapes makes them easier to 
correct for detector-related 

effects

Default choice of all LHC collaborations
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Resiliency: backreaction

29

Without 
background

“How (much) a jet changes when immersed in a background”
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Resiliency: backreaction
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Without 
background

With 
background

“How (much) a jet changes when immersed in a background”
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Resiliency: backreaction

29

Backreaction loss
Backreaction gain

Without 
background

With 
background

“How (much) a jet changes when immersed in a background”
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Resiliency: backreaction

30
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Anti-kt jets are much more resilient to changes from background immersion

(NB. Backreaction is a minimal issue in pp background and at large pt. 
Can be much more important in Heavy Ion collisions)
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Hard jets and background

31

background back-reaction

‘susceptibility’ ‘resiliency’

Modifications of the hard jet

�pt = �A± (⇥
⇧

A + ⇥�A + �
�
⇤A2⌅ � ⇤A⌅2) + �pBR

t

Background 
momentum density 

(per unit area)
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Jet areas

32

Jet areas, graphically represented by the 
coloured regions, represent the 

susceptibility of each jet to contamination 
from diffuse, soft radiation

Given an IRC-safe jet algorithm, jet areas can be calculated numerically for each 
jet, opening the way for a jet-by-jet, rather than average, correction for 

background contamination
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Background subtraction

33

Observable level Event ( = particle) level

‣ Determination of susceptibility to 
contamination of each specific 
observable needed
‣ Possibility to get unbiased subtraction 

by construction
‣ Basic example: transverse momentum

ptsub = ptraw - ρA (MC, Salam 0707.1378)

‣ Other examples:
‣ Analytical calculations of susceptibility for 

selected jet shapes (Sapeta et al. 1009.1143,  
Alon et al. 1101.3002)

‣ Moments of jet fragmentation functions 
(MC, Quiroga, Salam, Soyez, 1209.6086)

‣ Generic (numerical) approach to 
susceptibility determination for any shape 
(Soyet et al, 1211.2811)
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Background subtraction

33

Observable level Event ( = particle) level

‣ Determination of susceptibility to 
contamination of each specific 
observable needed
‣ Possibility to get unbiased subtraction 

by construction
‣ Basic example: transverse momentum

ptsub = ptraw - ρA (MC, Salam 0707.1378)

‣ Other examples:
‣ Analytical calculations of susceptibility for 

selected jet shapes (Sapeta et al. 1009.1143,  
Alon et al. 1101.3002)

‣ Moments of jet fragmentation functions 
(MC, Quiroga, Salam, Soyez, 1209.6086)

‣ Generic (numerical) approach to 
susceptibility determination for any shape 
(Soyet et al, 1211.2811)

‣ The event is modified before 
calculating observables (jets, shapes, 
etc)
‣ Method not naturally unbiased, but 

can often be tuned
‣ Final dispersion potentially lower, as 

effective number of particles usually 
reduced

‣ Examples:
‣ CMS Voronoi method (Lai, unpubl.)
‣ Cleansing (Krohn, Schwartz, Low, Wang, 

1309.4777)
‣ Constituent Subtraction (Berta, Spousta, 

Miller, Leitner, 1403.3108)
‣ PUPPI (Bertolini, Harris, Low, Tran, unpubl.)
‣ SoftKiller (MC, Salam, Soyez, 1407.0408)
‣ ....
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Background subtraction: jet-based

34

phard jet, correctedT = phard jet, rawT �ρ⇥Areahard jet

Correction of a jet transverse momentum

If ρ is measured on an event-by-event basis, and each jet subtracted individually, this procedure 
will remove many fluctuations and generally improve the resolution of, say, a mass peak

�pt = �A± (⇥
⇧

A + ⇥�A + �
�
⇤A2⌅ � ⇤A⌅2) + �pBR

t

Irreducible fluctuations: 
uncertainty of the subtraction

MC, Salam, 0707.1378

Needs two ingredients: ρ and Ajet
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Numerical jet shape correction

35

A generic jet shape 
(a function of the momenta of all 
constituents of a jet) is modified 

by the addition of pileup

Correct it by calculating numerically the derivatives that enter its Taylor 
expansion and subtracting (this generalises the jet area/median subtraction for transverse mom.)

Pileup 
momentum density

Numerical derivative 
w.r.t.  ghosts momenta

Soyez et al. 1211.2811
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An event: particle level

36

Pileup

Hard

G
. S

oy
ez

Soft Killer introduces a particle momentum cut such that 
the median momentum density (ρ) of the event is zero
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Soft Killer

37

Pileup

Hard

cut

empty empty empty empty empty

G
. S

oy
ez

Half of the event is empty ⇒ ρ = 0 (because it’s the median)

NB. SK needs tuning of the size of the patches used to calculate ρ.
0.4 was found to be a good choice for R=0.4 jets



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016

Soft Killer performance

38
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Soft Killer performance

39
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Many jet shapes:
‣ jet mass
‣ kt clustering scale
‣ jet width (= broadening, = girth)
‣ energy-energy correlation moment
‣ τ21 and τ32 N-subjettiness ratios

‣ Biases under control

‣ Dispersions smaller than 
with other methods
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Jet substructure

40

Not all jets are created equal

For instance, 
you may want 
to be able to 

tell
X

from this

Decay of a heavy 
(boosted) object

Light parton 
fragmentation

Or, more generally, you may want to be able to tell something about how the 
jet originated (e.g. quark/gluon discrimination, quenching, .....)
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How to ‘look’ inside a jet?

41

‣Use the clustering history of a ‘physical’ hierarchical 
clustering algorithm

‣Define jet shape-variables sensitive to specific 
distribution of radiation inside the jet

‣Literally ‘look’ at the distribution of radiation inside 
the jet (machine-learning techniques)

‣ .....
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Tagging and Grooming

42

‣The substructure of a jet can be exploited to
‣tag a particular structure inside the jet, i.e. a massive 

particle
‣ First examples: Higgs (2-prong decay), top (3-prong decay)

‣remove background contamination from the jet or its 
components, while keeping the bulk of the perturbative 
radiation (often generically denoted as grooming)

‣ First examples: filtering,  trimming, pruning

To understand how we need to recall how a 
sequential recombination algorithm works
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Dendrogram

43

Distance between two objects 
is given by the height of the 
lowest internal node that they 

share.

Internal node

Order of clustering here is 1,2,3,4

1
2

3
4

Used to represent graphically the sequence of clustering steps 
in a sequential recombination algorithm

Distance

The clustering sequence is 4-5 (1), 2-3 (2), 23-45 (3), 1-2345 (4)

1 2 3 4 5
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First try

44

anti-kt
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016 50

Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016 54

Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.0014577

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 0.00147749

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 1.96

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016

Second try

62

kt
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 1.48276

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 2.34277

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 717.825

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 11432

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Splittings and distances

80

Quasi-collinear 
splitting (ptj < pti)

pt
pti = (1-z)pt

m ptj = zpt

m2 ⇥ ptiptj�R2
ij = (1� z)zp2

t �R2
ijInvariant mass:

dij = z2p2
t �R2

ij ⇥
z

1� z
m2

kt distance:

For a given mass, the background (parton shower) will have 
smaller distance dij than the signal (symmetric 1→2 decay), 

i.e.  it will tend to cluster earlier in the kt algorithm

(ptj < pti)

Potential tagger: last clustering in kt algorithm
This is where the hierarchy of the kt algorithm becomes relevant. 

QCD radiation is clustered first, and only at the end the symmetric, 
large-angle splittings due to decays are reclustered
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Third try

81

Cambridge/Aachen
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.93202

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
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Identifying jet substructure: Cam/Aachen
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Identifying jet substructure: Cam/Aachen
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1



Matteo Cacciari - LPTHE Hard Probes -  Wuhan - September 2016 98

Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08
Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09
Ellis, Vermilion & Walsh ’09

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Hierarchical substructure
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Slide by 
Gavin Salam
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Hierarchical substructure
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Slide by 
Gavin Salam

Undo the last 
clustering step(s)
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The IRC safe algorithms
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Speed Regularity UE
contamination

Backreaction Hierarchical
substructure

kt ☺☺☺ ☂ ☂☂ ☁☁ ☺☺

Cambridge
/Aachen

☺☺☺ ☂ ☂ ☁☁ ☺☺☺

anti-kt ☺☺☺ ☺☺ ☁/☺ ☺☺ ✘

SISCone ☺ ☁ ☺☺ ☁ ✘

Array of tools with different characteristics. 
Pick the right one for the job
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‘Jet substructure’ papers in INSPIRE
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More than 100 papers since 2008
(+ some background noise)

Number of papers containing the words ‘jet substructure’
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Pioneered by M. Seymour in the early 
‘90s,  rebooted by BDRS paper
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Papers containing "jet substructure"
+ pioneering papers by Mike Seymour in 1991 and 1994
(Source: INSPIRE)
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The BDRS tagger/groomer
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‣A two-prong tagger/groomer for boosted Higgs, which
‣ Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

‣ Employs a Mass-Drop condition, as well as an asymmetry cut to 
find the relevant splitting (i.e. ‘tag’ the heavy particle)

‣ Includes a post-processing step, using ‘filtering’ (introduced in the same paper) 
to clean as much as possible the resulting jets of UE contamination 
(‘grooming’)

Butterworth, Davison, Rubin, Salam, 2008

pp →ZH → ννbb--
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pp →ZH → ννbb

Start with the 
hardest jet

Use C/A with 
large R=1.2

mj = 150 GeV
G

. S
al

am

- -
BDRS: tagging
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pp →ZH → ννbb

Undo last step of 
clustering

Check how the mass splits 
between the two subjets

(m1 = 139 GeV, m2 = 5 GeV)
and how asymmetric the 

splitting is

If repeator
min(p2

t1, p
2
t2)

m2
j

�R2
12 < ycut

max(m1,m2)
mj

> µ

BDRS: tagging
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pp →ZH → ννbb

m1 = 52 GeV, m2 = 28 GeV

Stop when a large mass 
drop is observed 

(and recombine these
 two jets)

[NB. Parameters used μ = 0.67 and ycut = 0.09]
G

. S
al

am

BDRS: tagging
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BDRS: filtering

106

Start with the 
recombined jet

pp →ZH → ννbb

G
. S

al
am
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Recluster the 
contituents with Rfilt

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Only keep the nfilt 
hardest jets

The low-momentum stuff surrounding the hard particles has been removed

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Visualisation of BDRS
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Cluster with a large R
Undo the clustering into subjets,

until a large asymmetry/mass drop 
is observed: tagging step

Re-cluster with smaller R, 
and keep only 3 hardest 

jets: grooming step

pp →ZH → ννbb--
Butterworth, Davison, Rubin, Salam, 2008
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First taggers/groomers
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‣ Mass Drop + Filtering

‣ Jet ‘trimming’  

‣ Jet ‘pruning’ 

Butterworth, Davison, Rubin, Salam, 2008

Krohn, Thaler, Wang, 2009

S. Ellis, Vermilion, Walsh, 2009

Aim: limit contamination from QCD background while 
retaining bulk of perturbative radiation

Decluster with mass drop and asymmetry conditions
Recluster constituents into subjets at distance scale Rfilt,  retain nfilt hardest subjets 

Recluster constituents into subjets at distance scale Rtrim,  
retain subjets with pt,subjet > εtrim pt,jet 

While building up the jet, discard softer subjets when ΔR > Rprune 
and min(pt1,pt2) < εprune (pt1+pt2)

Trimming and pruner are a priori groomers, but can become taggers 
when combined with an invariant mass window test 

(if you can groom away everything then there’s no heavy particle in the jet)
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Soft Drop declustering

111

Larkoski, Marzani, Soyez,Thaler, 2014

Decluster and drop softer constituent unless i.e. remove wide-angle 
soft radiation from a jet

The paper contains
✓ analytical calculations and comparisons to Monte Carlos
✓ study of effect of non-perturbative corrections
✓ performance studies

Example of SoftDrop 
performance when used 
as a boosted W tagger
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The jet substructure maze
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Slide by G. Salam, now a few years old
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Alternatives to hierarchical substruct.
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‣ If what we are interested in is the structure of the constituents of a jet, the 
“jet” itself is not the most important feature. 
‣ A different algorithm, or simply the study of the constituents in a certain patch 

will also do.  Selected alternatives are:
‣ Use of jet-shapes to characterise certain features
‣ e.g. N-subjettiness: how many subjets a jets appears to have

‣ Alternative ways of clustering
‣ e.g. Qjets: the clustering history not deterministic, but controlled by 

random probabilities of merging. Can be combined with, e.g. pruning

‣ Use information from matrix element
‣ e.g. shower deconstruction: use analytic shower calculations to estimate 

probability that a certain configuration comes from signal or from 
background

‣ Use event shapes mimicking jet properties
‣ e.g. JetsWithoutJets, mimicking trimming

Thaler, van Tilburg, 2011

Ellis, Hornig, Roy, Krohn, Schwartz, 2012

Soper, Spannowsky, 2011

Bertolini, Chen, Thaler, 2013
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Distances to axes of N subjets

N-subjettiness

114

τN measures departure from N-parton energy flow:
if a jet has N subjets, τN-1 should be much larger than τN

Sum over constituents 
of a jet

Thaler, van Tilburg, 2010
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N-subjettiness
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A jet with a small τN,N-1 

is more likely to have 
N than N-1 subjets  

(from 1011.2268, with β=1)

Thaler, van Tilburg, 2010
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C

116

Energy correlation functions
Probes of N-prong structures without requiring 

identification of subjets

ECF(N+1) is zero if there are only N particles 

More generally, if there are N subjets one expects 
ECF(N+1) to be much smaller than ECF(N)
[because radiation will be mainly soft/collinear to subjets]

Angular (y-φ) distances 
between constituents

Larkoski, Salam, Thaler 2013
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C

117

Discriminators

A jet with a small CN is more likely 
to have N prongs and at most soft/coll radiation  

Larkoski, Salam, Thaler 2013

small for N prongs: 
if N hard partons, small if radiation 

only soft-collinear
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C
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C1
quark-gluon discriminator

C3
top tagging

Note different values of β 
(chosen to maximise discriminating power)
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Conclusions part 1
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‣A number of different IRC-safe jet algorithms exist
‣They all try to be good proxies for hard partons, but they have 

different characteristics, especially with respect to soft 
particles

‣ Jets from all algorithms inevitably suffer from pileup contamination
‣Techniques exist to subtract it, either at jet-level, or at 

particle-level

‣Both the jet algorithms and many pileup subtraction techniques 
are packaged either in FastJet or in fjcontrib contributions
‣Use of standard algorithms and packages (either 

directly or through interfaces) should be privileged, as it 
ensures reproducibility

http://fastjet.fr http://fastjet.hepforge.org/contrib/
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Conclusions part 2
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The big news of the past few years has been the 
emergence of jet-based taggers and groomers, 
and more generally of jet substructure studies

‣ They have proven their worth in ‘Standard Model’ analyses

‣ They are being implemented in BSM searches

‣ They are being used in heavy ions physics to probe the 
details of the parton splittings taking place in quenched jets 


