# **ALICE Overview**

### Xiaoming Zhang for the ALICE Collaboration



- ALICE experiment at the LHC
- Collective effects
- Hard probes
  - High *p*<sub>T</sub> particles, jets, heavy flavours...
- Small systems (pp and p–Pb collisions)

## Hard Probes 2016

8<sup>th</sup> International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

September 23–27, 2016 Wuhan, China



## The ALICE Experiment





Hard Probes 2016

## **ALICE** Performance



- Efficient low- $p_T$  tracking down to 150 MeV/c
- Excellent particle identification anti-<sup>3</sup>He observed directly, hadron, lepton and photon identification up to high momenta
- Excellent vertexing capabilities (heavy flavours, V<sup>0</sup>, cascades, conversions)
- Forward muon spectrometer:  $J/\psi$  and Y reconstruction down to  $p_T = 0$
- Precise event characterization (most central collisions: 0-2.5% centrality class) Hard Probes 2016 **ALICE Overview**



### **Data Collection**

### RUN-I milestone (2009 – 2013)

| Year | System | Energy √ <i>s</i> <sub>NN</sub> (TeV) | Integrated<br>Iuminosity (nb <sup>-1</sup> ) |
|------|--------|---------------------------------------|----------------------------------------------|
| 2010 | Pb–Pb  | 2.76                                  | ~ 0.01                                       |
| 2011 | Pb–Pb  | 2.76                                  | ~ 0.1                                        |
| 2013 | p–Pb   | 5.02                                  | ~ 30                                         |

pp collisions at 0.9, 2.76, 7 and 8 TeV, total integrated luminosity up to ~20 pb<sup>-1</sup>

### **RUN-II, since 2015**

- Pb–Pb at 5.02 TeV: up to 0.5 nb<sup>-1</sup>
- pp at 13 TeV and 4 days at 5.02 TeV (~100 nb<sup>-1</sup>)
- Upcoming p–Pb at 5.02 and 8 TeV: 10 times more statistics than in RUN-I
   Hard Probes 2016





## **Charged-Particle Multiplicity**



- ALICE: Pb-Pb at 5.02 TeV highest energy so far
  - For 0–5% most central collisions, confirms trend from lower energies
- $<dN_{ch}/d\eta > vs. <N_{part}>$ : similar evolution with centrality between 5.02 and 2.76 TeV
  - ~20% increase going from 2.76 to 5.02 TeV
  - Provides further constraints for models

Hard Probes 2016

**ALICE Overview** 



## **Azimuthal Anisotropy**

- Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative to the reaction plane ( $\Psi_{RP}$ ) coefficients  $v_2$ ,  $v_3$ ,  $v_4$ ...  $V_n$
- Elliptic flow (v<sub>2</sub>): spatial anisotropy pressure gradients leads to momentum anisotropy — hydrodynamics
- Higher order flow: bring additional constraints on the initial conditions, η/s, EoS, freeze-out conditions...





### **Anisotropic Flow**



- Anisotropic flow coefficients *v*<sub>2</sub>, *v*<sub>3</sub>, *v*<sub>4</sub> measurements using two- and multiparticle cumulants
- Similar p<sub>T</sub>-differential results at 2.76 and 5.02 TeV
  - $v_3$  becomes larger than  $v_2$  for  $p_T > 2 \text{ GeV}/c$  in central collisions



Hard Probes 2016

## **Anisotropic Flow**

**ALICE Overview** 



- Anisotropic flow coefficients v<sub>2</sub>, v<sub>3</sub>, v<sub>4</sub> measurements using two- and multiparticle cumulants
- Similar *p*<sub>T</sub>-differential results at 2.76 and 5.02 TeV
  - $v_3$  becomes larger than  $v_2$  for  $p_T > 2 \text{ GeV}/c$  in central collisions
- *p*<sub>T</sub>-integrated values indicate an increase with collision-energy attributed to the increase in <*p*<sub>T</sub>>
- Good agreement with hydrodynamical calculations
  - Measurements support a low value for η/s ratio

### <sup>9</sup> Direct Photons in Pb–Pb Collisions

Talk: D. F. Lodato, Jing-Zhou hall, Saturday, Sep. 24th 8:30



- Low- $p_T$ : 2.6 $\sigma$  excess w. r. t. models in 0–20% central thermal contribution
- $T_{\text{eff}} = 304 \pm 11(\text{stat.}) \pm 40$  (syst.) MeV in central Pb–Pb collisions at 2.76 TeV
  - 30% higher than at RHIC (Au–Au at  $\sqrt{s_{NN}}$ =200 GeV)

Hard Probes 2016

# Hard Probes: Medium Tomography

- Produced in the early stage of heavy-ion collisions
- Experience the full evolution of the QCD medium, and interact with particles in the medium and loss energy
- Efficient probes for understanding the transport properties of the medium
- Nuclear modification factor,  $R_{AA}$ , sensitive to the presence of the medium

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{< T_{\rm AA} > {\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \frac{\rm QCD \ medium}{\rm QCD \ vacuum}$$

- $R_{AA} = 1$ , if there is no medium modification
- Shopping list
  - High  $p_T$  particles, jets
  - Open heavy flavours
  - Quarkonia (J/ψ, ψ'... Y...)

Hard Probes 2016



## High-p<sub>T</sub> Charged-Particle R<sub>AA</sub>



Talk: M. L. Knichel, Wuhan hall, Sunday, Sep. 25th 8:30

- Strong modification of the spectrum shape in most central collisions
- Minimum at  $p_T \approx 6-7 \text{ GeV}/c$
- Strong rise in  $6 < p_T < 50 \text{ GeV}/c$
- Strong centrality dependence
- R<sub>AA</sub> at 5.02 TeV similar to 2.76 TeV
- Further constraints on medium properties



Hard Probes 2016

ALI-PREL-107300

# Jet R<sub>AA</sub> in Pb–Pb Collisions at 5.02 TeV

Talk: H. Yokoyama, Xiang-Yang hall, Saturday, Sep. 24th 8:30
 Jet: a spray of particles from hard parton fragmentation — get closer access

to parton energy



- Out-of-cone radiation: energy loss in jet cone
  - Jet yield suppression, di-jet energy imbalance, jet-jet/hadron-jet acoplanarity...
- In-cone radiation: medium modified fragmentation
  - Jet shape broadening, modification of transverse energy profile...
- Charged-particle jet R<sub>AA</sub> at 5.02 TeV
- Consistent with *R*<sub>AA</sub> of charged particles and charged-jet *R*<sub>AA</sub> at 2.76 TeV



Hard Probes 2016



### Jet Structure

Talk: C. Bianchin, Xiang-Yang hall, Saturday, Sep. 24th 10:40





Hard Probes 2016

- Jet mass: Pb–Pb distribution is shifted towards smaller masses w. r. t. p–Pb collisions – indicate large angle out-of-cone radiation in the medium
- Radial momentum (g)  $p_T$ -weighted jet width
  - g shifted towards lower values in Pb–Pb data relative to PYTHIA — indication of more collimated jet cores in data

### 14 Near-side Jet Peak Broadening Talk: M. Kofarago, Shi-Yan hall, Saturday, Sep. 24th 17:00



- Moderate broadening in  $\Delta \phi$ , while much larger broadening in  $\Delta \eta$
- Hint of strong interaction of jets with the medium

# Near-side Jet Peak Broadening<sup>15</sup>



- Moderate broadening in  $\Delta \phi$ , while much larger broadening in  $\Delta \eta$
- Hint of strong interaction of jets with the medium
- AMPT without melting but with hadronic scattering describes data better than other options — describes both peak broadening and depletion in data
- Depletion and broadening result from interplay of jets and collective medium, driving factor for depletion and broadening is radial flow
   Hard Probes 2016



# $K_S^0$ and $\Lambda$ Production in Jets

Talk: Y. Zhang, Xiang-Yang hall, Saturday, Sep. 24th 15:20



- K<sub>S<sup>0</sup></sub> and Λ production in chargedparticle jets in Pb–Pb collisions
- Reference PYTHIA smeared with background fluctuations
- K<sub>S</sub><sup>0</sup>: data consistent with PYTHIA within errors
  - Hint of low- $p_T$  enhancement in data
- A: data significantly higher than PYTHIA at low  $p_{T}$

ALI-PREL-112798

 Investigating medium modified fragmentation, effect seems to differ between baryons and mesons — further constraints on reference from data needed

Hard Probes 2016

#### **ALICE Overview**

# $R_{AA}$ of D mesons and non-prompt J/ $\psi$



- $R_{AA}(D) < R_{AA}(J/\psi \leftarrow B)$ :  $\Delta E_c > \Delta E_b$  mass dependence of HF energy loss
- *R*<sub>AA</sub>(D)≈*R*<sub>AA</sub>(π): Δ*E*<sub>c</sub>≈Δ*E*<sub>g</sub>(?) or different parton *p*<sub>T</sub> distributions and fragmentation functions
- Charm hadronization through recombination in medium (?) predicted in models
   hint of R<sub>AA</sub>(D)<R<sub>AA</sub>(D<sub>s</sub>+) in data to be confirmed with higher precision
  measurements

Hard Probes 2016

# Heavy-Flavour Decay Muons

Talk: Z. Zhang, Jing-Zhou hall, Sunday, Sep. 25th 10:40



- R<sub>AA</sub> of heavy-flavour decay muons
- Large suppression observed in most central collisions
- $R_{AA}$  at 5.02 TeV consistent with that at 2.76 TeV in the overlap  $p_T$  region
- v<sub>2</sub> of heavy-flavour decay muons at forward rapidity (2.5<y<4) is compatible with heavy-flavour decay electrons at mid-rapidity (1yl<0.7)</li>
- Observed positive v<sub>2</sub> at intermediate-p<sub>T</sub> (3σ effect) similar to the one for D mesons — confirms the significant interaction of heavy quarks with the medium
   Hard Probes 2016 X. Zhang

## Quarkonia Production in Pb–Pb Collisions

Talk: V. Feuillard, Jing-Zhou hall, Saturday, Sep. 24th 16:20

Talk: G. Luparello Shi-Yan hall, Saturday, Sep. 24th 8:30



Emerick et al.: regeneration + feed-down ± shadowing uncertainty Zhou et al.: CNM effect ± feed-down uncertainty

- Clear J/ $\psi$  suppression with almost no centrality dependence above  $N_{\text{part}} \sim 100$
- Suppression insensitive to the collision centrality in semi-central and central collisions indication of regeneration
- Y: comparisons with models centrality dependence is qualitatively reproduced
- Suppression is slightly underestimated when considering regeneration
  Hard Probes 2016
  ALICE Overview



## Small Systems

- Small systems
  - pp collisions: QCD vacuum, baseline for heavy-ion and p-Pb collisions
  - p–Pb collisions: quantify Cold Nuclear Matter (CNM) effects nuclear modified PDF, k<sub>T</sub>-broadening coherent energy loss of partons in nuclear medium...



*R*<sub>pPb</sub> consistent with unity — strong suppression observed in central Pb–Pb collisions at mid-rapidity and forward rapidity is due to the QCD medium Hard Probes 2016
 *R*<sub>pPb</sub> consistent with unity — strong suppression observed in central Pb–Pb Collisions at mid-rapidity and forward rapidity is due to the QCD medium ALICE Overview

### 21 Particle production vs. Event Multiplicity Talk: O. Busch, Wuhan hall, Sunday, Sep. 25th 10:40



#### Talk: G. Luparello Shi-Yan hall, Saturday, Sep. 24th 8:30



Open question for strangeness production at the LHC — onset of QCD-phase transition in small system?

Hard Probes 2016



### Conclusion

- ALICE LHC RUN-II Pb–Pb collisions at 5.02 TeV
  - The highest collision energy, 5 times higher integrated luminosity than RUN-I
- Heavy-ion collisions in ALICE RUN-I and RUN-II
- Anisotropic flow: support a low value for  $\eta/s$  (~0.2)
- Excess of low- $p_T$  photon:  $T_{eff} \approx 304 \text{ MeV} 30\%$  higher than at RHIC
- Jet shapes: more collimated jet core and large angle out-of-cone radiation in the medium, jet peak depletion and broadening interplay of jets and collective medium
- Open heavy flavours: mass dependence of parton in-medium energy loss, collective motion of heavy quarks at both mid- and forward rapidity
- Quarkonia:  $J/\psi$  results support a picture of J/psi suppression and regeneration in the medium; strong suppression of Y production observed at forward rapidity
- Small systems
  - Baseline for hard probe production in QCD medium strong suppression observed in central Pb–Pb is due to the QCD medium (high- $p_T R_{pPb} \approx 1$ )
- Hints of "QGP-effects" also seen in high-multiplicity pp, p–Pb collisions
  Hard Probes 2016
  ALICE Overview



### **ALICE Contribution List**

- D. F. Lodato, Sep 24, Sat, 08:30, Jing-Zhou Hall, Direct photon yield in pp and in Pb-Pb collisions
- T. Okubo, Sep 25, Sun, 9:30, Wuhan Hall, Neutral meson production in pp, p–Pb and Pb–Pb collisions
- T. Gunji, Sep 24, Sat, 11:40, Jing-Zhou Hall, Low mass dielectron measurements in pp, p-Pb and Pb-Pb collisions
- J. Viinikainen, Sep 24, Sat, 10:40, Shi-Yan Hall, Jet transverse fragmentation momentum from h-h correlations in pp and p–Pb collisions
- M. Kofarago, Sep 24, Sat, 17:00, Shi-Yan Hall, Near-side jet peak broadening in Pb–Pb collisions at 2.76 TeV
- X. Peng, Sep 25, Sun, 8:30, Shi-Yan Hall, pi0-hadron correlations in pp and Pb–Pb collisions and pi0 elliptic flow in Pb–Pb collisions
- M. L. Knichel, Sep 25, Sun, 8:30, Wuhan Hall, Transverse momentum spectra and nuclear modification of charged particles at 5.02 TeV
- O. Busch, Sep 25, Sun, 10:40, Wuhan Hall, Strangeness production and nuclear modification
- H. Yokoyama, Sep 24, Sat, 09:30, Xiang-Yang Hall, Measurement of Inclusive Charged Jet Production in pp and Pb–Pb collisions at 5.02 TeV
- C. Bianchin, Sep 24, Sat, 10:40, Xiang-Yang Hall, Jet mass measurements in Pb–Pb and p–Pb collisions
- Y. Zhang, Sep 24, Sat, 15:20, Xiang-Yang Hall, Baryon to meson ratio in jets and underlying event in Pb–Pb, p–Pb and pp collisions
- G. Luparello, Sep 24, Sat, 08:30, Shi-Yan Hall, Measurements of heavy-flavour production vs. multiplicity and angular correlations in pp and p-Pb collisions
- A. Dubla, Sep 24, Sat, 16:00, Wuhan Hall, Measurements of the suppression and anisotropy of heavy-flavour particles in Pb–Pb collisions at 2.76 TeV
- Z. Zhang, Sep 25, Sun, 10:40, Jing-Zhou Hall, Production of Muons from Heavy-Flavour Hadron Decays in Pb–Pb Collisions at 5.02 TeV
- V. J. Gaston Feuillard, Sep 24, Sat, 16:20, Jing-Zhou Hall, Charmonium production in Pb–Pb collisions
- G. G. Fronze, Sep 25, Sun, 8:30, Jing-Zhou Hall, Upsilon production in p-Pb and Pb-Pb collisions

#### **Posters**: total 7, Sep 23, Fri, 17:00

- Q. Shou, Measurement of elliptic flow of neutral pions in Pb–Pb collisions at 2.76 TeV
- M. Kim, Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb–Pb collisions at 2.76 TeV
- S. Kar, Measurement of angular correlations between D mesons and charged particles in pp and p-Pb collisions
- A. Festanti, Measurement of the D-meson prompt fraction with a data-driven approach
- A. Silva, Prospects for the measurement of D mesons in jets in Pb–Pb collisions
- R. Hosokawa, Measurement of inclusive charged jet cross section in pp collisions at 5.02 TeV
- D. Sekihata, Analysis of neutral mesons in pp and Pb–Pb collisions with the PHOS detector in the Run2

#### Hard Probes 2016



# Backup



## The ALICE Experiment



X. Zhang



### **ALICE Performance**





## Flow Harmonic Correlations



- It is necessary to look at more than  $v_n$  to extract  $\eta/s(T)$
- Standard flow measurements are not very sensitive to  $\eta/s(T)$ 
  - At least for central and semi-central collisions



## Flow Harmonic Correlations



- New observable: Symmetric Cumulants (SC)
  - Insensitive to non-flow effects due to multiparticle correlations
  - SC(3,2): sensitive to initial conditions
  - SC(4,2): sensitive to both initial conditions and η/s
  - Higher sensitivity to  $\eta$ /s and initial conditions than  $v_n$  alone

### 29 Anisotropy Flow in Wide Rapidity Range



- Temperature dependence of η/s
- *T* drops at forward rapidities
  - η/s change
  - the system spend less time in QGP phase
- Shape of v<sub>n</sub>(η) largely independent of centrality for the flow harmonics up to fourth order
- The higher harmonics fall off more steeply with increasing lηl.
- Results are not well reproduced by hydro, new challenge to the theory community

### 30 Anisotropy Flow in Wide Rapidity Range





- Longitudinal scaling:
  - Particle production (multiplicity, v<sub>1</sub>, v<sub>2</sub>) is energy-independent in in the rest frame of one of the colliding nuclei found at RHIC
  - Still valid up to the LHC energy

# $\eta/\pi^0$ Ratio in Pb–Pb Collisions



- $\eta/\pi^0$  ratio in Pb-Pb
  - Consistent with that in pp does not depend on collisions systems
  - Comparison to  $K^{\pm}/\pi^{\pm}$  ratio shows similar behavior
- pQCD NLO calculation at high  $p_T$  with energy loss reproduce the data
  - $p_T$  in 4-6 GeV/c sensitive to initial transport coefficient

ALICE Overview



## Jet Yield Suppression



- Agreement between ALICE and ATLAS
  - Contribution of low momentum jet fragments to jet energy is small
- *R*<sub>CP</sub> of jets and single hadrons are compatible
- ➡ Indication that the momentum is redistributed to larger angles



- Central collisions (0–5%): null-hypothesis can not be excluded (1.5~ $2\sigma$ )
  - ➡ Initial-state fluctuations (?)
- Semi-central collisions (30–50%): non-zero v<sub>2</sub> (3σ effect)
- ➡ Information of path-length dependence of parton in-medium energy loss
- Compatible with single particle and calo-jet  $v_2$  at high  $p_T$  (with different energy scales)
  - Large parton energy loss and that is sensitive to the collisions geometry

### 34 Heavy-Flavour and Quarkonia in QCD Medium

- Open heavy-flavours HF (open charm and beauty hadrons)
- R<sub>AA</sub>: radiative energy loss vs. collisional energy loss
  - Mass and color charge dependence
    - $\Delta E_g > \Delta E_{q \approx c} > \Delta E_b \longrightarrow R_{AA}^h < R_{AA}^D < R_{AA}^B \quad (?)$
  - Models needed to disentangle differences in energy loss vs spectral shape/fragmentation function
- Elliptic flow
  - Low- $p_T$ : initial conditions and degree of thermalization of HF in QGP
  - High-p<sub>T</sub>: path-length dependence of HF in-medium energy loss
- Quarkonia (J/ψ and Y families): sequential melting (Debye screening) vs.
  recombination
  - Sensitive to medium temperature





X. Zhang

00929 9

Q

Hard Probes 2016

# **Beavy-Flavour Decay Electrons**

Talk: A. Dubla, Wuhan hall, Saturday, Sep. 24th 16:00



- First  $R_{AA}$  measurement of beauty-decay electron:  $R_{AA} < 1$  for  $p_T > 3$  GeV/c
  - Consistent with the picture of mass-dependent radiative and collisional energy loss

### 36 J/ $\psi$ Production in Pb–Pb Collisions

Talk: V. Feuillard, Jing-Zhou hall, Saturday, Sep. 24th 16:20



- Excess in peripheral events is located at low  $p_{T}$  photoproduction? ALICE Phys. Rev. Lett. 116 (2016) 222301
- Suppression insensitive to the collision centrality in semi-central and central collisions — indication of regeneration
- Ratio of *R*<sub>AA</sub> at 5.02 TeV and 2.76 TeV: data are, within uncertainties, compatible with the theoretical models, and show no clear centrality dependence

Consistent with unity within errors:  $1.17 \pm 0.04$  (stat.)  $\pm 0.2$  (syst.) **ALICE Overview** Hard Probes 2016

### <sup>37</sup> Y(1S) Production in Pb–Pb Collisions

Talk: G. G. Fronze, Jing-Zhou hall, Sunday, Sep. 25th 8:30



Emerick et al.: regeneration + feed-down ± shadowing uncertainty Zhou et al.: CNM effect ± feed-down uncertainty

- R<sub>AA</sub> at 5.02 TeV and 2.76 TeV are compatible within uncertainties
  - $R_{AA}(5.02 \text{ TeV}, 0-90\%) / R_{AA}(2.76 \text{ TeV}, 0-90\%) = 1.3 \pm 0.2 \text{ (stat.)} \pm 0.2 \text{ (syst.)}$
- Comparisons with model predictions: centrality dependence is qualitatively reproduced
- Suppression is slightly underestimated when considering regeneration
  Hard Probes 2016
  ALICE Overview



- Increase of the ratio from low multiplicity (peripheral) to high multiplicity (central) collisions seen in pp, p–Pb, and Pb–Pb systems
- In Pb–Pb the enhancement at intermediate  $p_{T}$  can be explained by collective flow and/or quark recombination from QGP
- Hard Probes 2016 Same qualitative behavior seen in pp and p-Pb, but with smaller magnitude X. Zhang



Hard Probes 2016

## Strangeness Enhancement



Talk: O. Busch, Wuhan hall, Sunday, Sep. 25th 10:40 Study yield-ratios vs. systems size

- Significant enhancement of strange to nonstrange hadron production is observed
- The observed enhancement follows a hierarchy with the number of strange valence quarks
- MC model predictions do not describe satisfactorily the behavior of the data
- Open question for strangeness production at the LHC onset of QCD-phase transition in small





# **N/K<sub>S</sub><sup>0</sup> Ratio in Jets**

- The enhanced ratio of  $\Lambda/K_{S^0}$  at inter-median  $p_T$  of inclusive V<sup>0</sup>s in p–Pb and Pb–Pb collisions relative to pp collisions is not present within the jet region
  - Baryon enhancement does not origin from modified jet fragmentation
  - Results independent on jet radii and disfavor the hard-soft recombination





# Charmonia in p–Pb Collisions

- $J/\psi \rightarrow \mu^+\mu^-$  measured at forward/backward rapidities
- Pb-going direction: different trends for J/ $\psi$  and  $\psi(2S) \psi(2S)$  suppressed
- p-going direction: Indication of smaller  $Q_{pPb}$  for  $\psi(2S)$  relative to  $J/\psi$
- Models with only CNM effects (shadowing, *E* loss) do not describe  $\psi(2S)$
- Break-up due to interactions with hadronic resonance gas ("comovers") is a possible explanation for  $\psi(2S)$  suppression
- Models with QGP and Hadron Resonance Gas in fair agreement with data



X. Zhang

### 42 Heavy-Flavour Production vs Multiplicity



- Faster-than-linear increase of self-normalized D-meson and heavy-flavour decay electron yields as a function of the charged-particle multiplicity at mid-rapidity
- Model with hydrodynamics describes fairly data in both pp and p-Pb collisions

Hard Probes 2016



- New Silicon Inner Tracking System
- New or upgraded readout for all detectors to cope with higher rate, new CTP and Trigger Detectors
- New readout chambers for the Time Projection Chamber
- New Silicon Tracker in front of Muon Absorber
- New Data Acquisition System and High Level Trigger to handle continous readout, new Offline system



Hard Probes 2016

**ALICE Overview** 

X. Zhang