Overview of STAR Results

Bingchu Huang (UIC)
For the STAR Collaboration
Outline

- STAR detectors.
- Hard probes in Heavy Ion Collisions.
 - Electro-magnetic probes:
 - e^+e^- and direct virtual photon production.
 - Heavy flavor measurements:
 - Photoproduced J/ψ R_{AA}.
 - Suppressions of J/ψ and Υ.
 - R_{AA} and elliptic flow v_2 of D mesons.
 - Jet observable:
 - Jet splitting function --- shared momentum fraction Z_g.

- Summary and Outlook
PID: e, μ, and hadrons.

HFT: track pointing resolution $\sim 50\ \mu$m at $p_T \sim 0.8\ \text{GeV}/c$.
e^+e^- production in U+U

- Observed significant excess w.r.t hadronic sources at ρ-like mass region (0.3-0.76 GeV/c^2).

Within STAR acceptance.
Acceptance-corrected excess mass spectra are well described by a model that incorporates a broadened ρ spectral function in various collision systems and energies.
Integrated excess yield, normalized by \(dN_{\text{ch}}/dy \), is proportional to lifetime of fireball from 17.3 – 200 GeV.

Given that total baryon density is nearly constant and emission rate is dominant in the near-\(T_c \) region.

\[\text{R. Rapp, H. van Hees PLB 753 (2016) 586-590} \]
Extract direct virtual photon yields

The curves represent NLO pQCD prediction:

\[
\frac{T_{AA}d\sigma^{NLO}_{y}(p_T)}{dN_{y}^{\text{inclusive}}(p_T)}
\]

Compared to p+p reference, an excess is observed in low \(p_T \)
Direct virtual photon invariant yields

- $1-3$ GeV/c: dominated by thermal radiation from models.
- Data are consistent with both models for all the centralities except 40-80%.

Paquet: (2+1)D hydrodynamic evolution.
Rapp: Elliptic thermal fireball evolution.

Significant J/ψ signals at very low $p_T (<0.1 \text{ GeV}/c)$ in 40-80%.
No significant centrality dependence --- not from hadronic production.
J/ψ yields in Au+Au and U+U are similar at $p_T<0.1 \text{ GeV}/c$.
Nuclear modification factor R_{AA}

- R_{AA} drops from 20 to 1 as centrality changes from peripheral to semi-central.
- Slope from STARLight prediction in UPC is 196 (GeV/c)$^{-2}$, which reflects the size and shape of nucleus.
 - Fit w/o first data point: 199+/-31 (GeV/c)$^{-2}$.
- Possible new probe of QGP!
Results from MTD. J/ψ p_T coverage up to 14 GeV/c.
Transport models with regeneration and dissociation are well consistent with data.

Less regeneration and less dissociation at RHIC.

Data:
JHEP 05 (2016) 179 PRC 84 (2011) 054912
Tsinghua Model:
TAMU model:
X. Zhao, R. Rapp, PRC 82 (2010) 064905, NPA 859 (2011) 114
\[\gamma\] suppression

- Measurement in U+U extends the \(N_{\text{part}}\) coverage.
- Free-energy-based model tends to underpredict the \(R_{\text{AA}}\).
- Internal-energy-based models agree with data.

- Measured difference \(\gamma\) states via dimuon channel.
 - No bremsstrahlung tail.
 - Expect to extract the ratio of \((2S+3S)/1S\) from simultaneous fit to both dielectron and dimuon channel.
 - A factor of 4 improvement of statistics is expected when combining Run11 and Run14.

428 < \(T\) < 443 MeV

\[T = 340\] MeV

Zaochen Ye Sun 08:50
Quarkonia

STAR preliminary

\(\gamma\) states via dimuon channel.

\(\chi^2/\text{ndf} = 22.38/17\) for combined fit.

\(T(1S)\) yield: \(156.7 \pm 23.5\).

\((2S+3S)/1S\) fit: \(0.375 \pm 0.132\).

\(\text{Run14 Au+Au at 200 GeV L} \sim 14.2 \text{ nb}^{-1}\)
First measurement of $D^0 R_{AA}$ using STAR HFT.

$D^0 v_2$ is finite and lower than that of light mesons for $1<p_T<4$ GeV/c in 0-80%.

Suppression is consistent with published result.
DUKE:
• (2+1)-D viscous hydro + hybrid coalescence and fragmentation model
• Input value for diffusion coefficient $2\pi T \times D = 7$ fixed to fit LHC results
• Underestimate the magnitude of v_2 in experimental data

D⁰ R_{AA} and v₂

TAMU:
• Full T-matrix treatment, non-perturbative model with internal energy potential
• Good agreement with $D⁰$ meson $v₂$, data favor model including c quark diffusion in the medium.
• Qualitatively describe R_{AA}.
• Diffusion coefficient extracted from calculation $2\pi T x D = 3-11$

STAR: PRL 113 (2014) 142301
D^0 R_{AA} and v_2

SUBATECH:
- MC@sHQ calculation with latest EPOS3 initial conditions
- Good agreement between model and experiment for both v_2 and R_{AA} in entire p_T range
- Diffusion coefficient extracted from calculations 2\pi T \times D \sim 2-4

STAR: PRL 113 (2014) 142301

Conclusion for D^0 R_{AA} and v_2:
- Data favor model that charm quark flows.
- D^0 v_2 and R_{AA} can be simultaneously described by models with diffusion coefficient between 2-12, and differences between models need to be resolved.
$D_s R_{AA}$ and elliptic flow v_2

- $D_s R_{AA}$ may be higher than D^0.
- Higher D_s/D^0 ratio wrt. PYTHIA?
- Will follow up with better precision measurements.
Jet splitting function

Soft Drop Condition:

\[z > z_{\text{cut}} \theta^\beta \]

Based on declustering an angular-ordered tree

“Groomed Momentum Sharing”

\[z_g = \min \left(\frac{p_T1, p_T2}{p_T1 + p_T2} \right) \]

For \(\beta = 0 \), \(z_g > z_{\text{cut}} \):

\[\frac{d\sigma}{dz_g} \propto \overline{P}_i(z_g) + O(\alpha_s^2) \]

- \(\sim \) independent of \(p_T \) (in UV limit)
- \(\sim \) independent of \(\alpha_s \)

\(P_i \): Altarelli-Parisi splitting functions (symmetrized)

q\rightarrow qg, g\rightarrow gg, g\rightarrow qg (Kernels in DGLAP)

J. Thaler ALICE Jet Workshop, Yale

Larkoski et al.,
Z_g measurements in p+p and Au+Au

First measurement of z_g at RHIC z_g for di-jets with “hard cores”.

- p+p HT Run6
 Results from trigger and recoil jets are consistent with PYTHIA.

- No significant modification of the splitting function found in Au+Au.

Constrains E-loss models, more theory input needed.

Kolja Kauder Sun 11:00
Jets

CMS observed signification modification in most central, but in quite different kinetic range.
What we learned so far:

• Hot medium modifies ρ meson and emits radiation via lepton pairs.

• Photoproduced J/ψ is observed in the peripheral heavy ion collisions.

• Quarkonium appears suppression and regeneration effects in the medium.

• Charm quark has suppression and collective flow in the QGP.

• Jet splitting function has no significant modification for jet p_T 10-30 GeV/c at RHIC.
• Y2014: with improved HFT efficiency after fixing a decoder issue, a factor of 2-4 improvement is expected in Au+Au.
• Y2015-2016: p+p, p+Au, and Au+Au at 200 GeV.

<table>
<thead>
<tr>
<th>2014-2016</th>
<th>2019-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF and Jet program.</td>
<td>BES-II, dilepton program.</td>
</tr>
<tr>
<td>sQGP properties with precision measurements.</td>
<td>High statistics data in low beam energies will be collected. QCD phase structure including chirality and disappearance of QGP signatures.</td>
</tr>
</tbody>
</table>
Parallel talks from STAR

EM probes:

Chi Yang, Direct virtual photon production.
Joey Butterworth, e^+e^- production in heavy ion collisions.

Heavy flavor probes:

Guannan Xie, D^0 production and azimuthal anisotropy.
Long Zhou, D_s production in Au+Au.
Long Ma, D meson correlation in $p+p$.
Yi Yang, J/ψ production in $p+p$ and A+A.
Yaping Wang, Electron from heavy flavor decays in $p+p$ and Au+Au.
Zaochen Ye, Υ production in Au+Au.
Wangmei Zha, Excess of very low p_T J/ψ yield in A+A.

Jet probes:

Kun Jiang, Away-side jet background subtraction.
Kolja Kauder, Shared momentum fraction z_g of Jets in $p+p$ and Au+Au.