Westfälische Wilhelms-Universität Münster

Jet Structure

Leticia Cunqueiro Münster University & CERN

Hard Probes 2016 26.09.2016, Wuhan, China

Jet Structure

-How is the jet shower modified in a Heavy Ion Collision -relate observed jet modifications to quenching

-Understand mechanisms of parton energy loss in medium -complex, multiscale problem

-Infer fundamental properties like density, T, or degrees of freedom of the medium

-clean connection to the theory, well defined observables

Jet Structure

- Requirements: clean connection to the theory, calculable from first principles
- Essentially two types of jet shapes:

-uses the clustering history-computes a function of the constituents

Probe different aspects of jet quenching:

 -energy redistribution
 -intrajet broadening/collimation
 -color coherence
 -flavour hierarchy

Jet Structure

Hiroki Yokoyama, ALICE

Jet mass

$$M = \sqrt{p^2 - p_T^2 - p_z^2}$$

$$p = \sum_{i=1}^{n} p_{T_i} \cosh \eta_i$$
$$p_z = \sum_{i=1}^{n} p_{T_i} \sinh \eta_i$$

-Mixes longitudinal and transverse components

-Related to the virtuality of parton initiating the shower

-Interactions of the projectile parton with the medium increase the radiation at large angles and this leads to an increase in the jet mass if the radiated angle is recovered within the jet cone.

Fully corrected observable: constituent and derivative subtraction for the pedestal background plus 2D unfolding for the residual background fluctuations and detector effects

Fully corrected measurement of the (charged) jet mass compared to Pythia (up) and pPb (down)

Chiara Bianchin, ALICE

Leticia Cunqueiro

Jet mass

The PbPb mass compared to models

-Intrajet broadening as happens in qPythia (all partons in the shower radiate) leads to higher masses

-Jewel r"ecoils off" leads to a collimation of the jet (particles transported out of the cone by elastic scattering)

-Jewel "recoils on" overshoots the data

Chiara Bianchin, ALICE

Qualitative remarks

An accelerated shower (ie gluons compared to inclusive) leads to larger mass, higher angularities (broader) and smaller p_TD (more constituents)

Mass, angularity and $p_T D$

Fragmentation function

$$D(z) \equiv \frac{1}{N_{\rm jet}} \frac{1}{\varepsilon} \frac{\Delta N_{\rm ch}(z)}{\Delta z}$$

Probes longitudinal energy redistribution within the jet

Change with pseudorapidity, change of flavour composition?

Martin Rybar, ATLAS 10

Leticia Cunqueiro

Fragmentation function

$$D(z) \equiv \frac{1}{N_{\rm jet}} \frac{1}{\varepsilon} \frac{\Delta N_{\rm ch}(z)}{\Delta z}$$

Mild p_T dependence

Martin Rybar, ATLAS

Leticia Cunqueiro

Martin Rybar, ATLAS

Jet Substructure: probing coherence

Partons that are separated less than the characterisitc scale of the medium, Δ_{med} , won't be resolved as independent emitters.

To probe color coherence we would like to:

-Find the antenna or first splitting in the jet

-Measure the opening angle

-Measure suppression of jet yields relative to pp differentially as function of the antenna

opening angle in the search of a threshold behaviour

-Look for asymmetries in the momentum sharing of the antenna

Finding the hardest (and earliest) splitting

1. Soft drop: reclusters the jet constituents (C-A) and goes through the clustering history, grooming away the soft branch at each step until (for $\beta=0$)

$$z_{cut} < \frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} \equiv z_g$$

2. Color factors cancel, and P(z_g)~1/z_g, weak p_T dependence

3. Depending on opening angle and on k_T of the splitting, different splitting times are probed $(t_f^2 \omega/k_T)$

4. Also, note that no scale R_{subjet} is needed as input

Effect of grooming in heavy ions

-What are we cutting away when grooming quenched jets?

-Interesting physics message here: distribution of fraction of groomed energy in data is similar to vacuum (pp+bkg).

-What room for fragmentation differences?

Hardest splitting momentum imbalance

-Asymmetric longitudinal momentum share in the hardest splitting within the jet -Energy dependent?

-Bkg fluctuations need to be under total control, since there are critical: the subleading subjet can be pumped up by a fluctuation. Smearing based on Hydjet, tuned to event bkg. -Semihard large angle medium-induced gluons might not be groomed and contribute to the asymmetry?

Marta Verweij, CMS

Hardest splitting momentum imbalance at STAR

-Jet selection not inclusive: require a trigger jet (>20 GeV/c) plus a recoil jet (>10 GeV/c)
-HT trigger (E_T>5.4 GeV)
-const. cutoff of 2 GeV/c

Results compatible with no modifications: -Selection bias (tangential) -large splitting time t_f for the given kinematics

Jet structure at large ΔR

- To probe jet structure at large ΔR, difficult as an intrajet or shape measurement due to large fluctuation background within
- Possible via interjet correlations->example ATLAS neighbouring jet or CMS missing p_T
- Event shapes?

Radim Slovak, ATLAS

Consistent picture for all jet shape measurements?

-Need a systematic MC study of all available (independent) observables.

-Perhaps agreements/standards from pp can be adopted in PbPb community?

Beyond inclusive jet shapes

 Coincidence measurements to suppress combinatorial bkg and to be able to measure shapes at low jet p_T and large R

07/11/14

Philip Harris Heavy Ion Jet Workshop

Pileup Jets or "Fake" Jets

- For all classical purposes
 - Pileup jet can be viewed as overlapping low p_{τ} jets
 - Consider the Jet substructure of such an object?

 $P(\text{overlap}|pT) \approx C N_{pu}^2 a_{iet}^2 pT^{-6.2} \text{ Real Jets} \approx pT^{-5}$

Leticia Cunqueiro

5

Other ideas to probe coherence: Nsubjettiness

-2 pronged jets have low tau2/tau1->0

-use this shape to tag 2-pronged jets (small subsample)

-Find the hardest splitting.

-Calculate nsubjetiness relative to the obtained hard splitting

-Explore change of rate of 2 pronged jets as function of opening angle

Other ideas: heavy quark jet shapes

The dependence of R_{AA}^{jets} on resolution R as well as jet shapes as function of R for heavy flavours could allow to study intrajet modifications for fixed quark flavour

For inclusive jets, the change of the energy profile with R mixes up with the change of q/g fractions with R

Thanks for the interesting conference!