Monte Carlo simulations of hard probes

Many thanks to: all MC speakers and authors

+ Leticia Cunqueiro, Abhijit Majumder, Liliana Apolinario

Marta Verweij (CERN)

September 2016 Hard Probes, Wuhan

Why do we need MCs?

Many experimental observables are not calculable from first principles or too complicated

Allow theoretical and experimental studies of complex multiparticle physics

Study the effect of a certain phenomenon on specific observables in case analytically not possible

For interpretation of experimental measurements

To improve precision of experimental data

All this requires theory-experiment interaction

Improving data quality with help from MCs

Feasibility studies – predict rate of certain process + quenching sensitivity for a observable

Simulate background – analysis strategy design

Study detector requirements – for new facilities and upgrades

Study detector resolution and efficiency

→ for example: quenching uncertainty on jet energy scale

Full MC event in vacuum

Hard scattering

Initial state radiation (ISR)

Multi parton interactions (MPI)

Final state radiation (FSR)

Color reconnections

Hadronization

. . .

QCD Parton shower in vacuum

Probabilistic process. (cross section is not affected)
Collinear factorization \rightarrow DGLAP evolution (Q₁>Q₂>Q₃...)
Altarelli-Parisi splitting functions describe $1\rightarrow 2$ splitting process

Key difference between the various generators is the evolution variable: virtuality Q^2 , transverse momentum k_T , angle θ

→ All the same in the collinear limit

MC ingredients for hard processes

Hard jet production – matrix elements

→ The same for vacuum and quenched MC

Final state parton shower

- → pp: resummation of collinear logarithms (LL)
- → AA: quenching implementation model dependent

Initial state parton shower

- → pp: similar to final state parton shower
- → AA: nPDFs, otherwise unchanged

Hadronisation

- > pp: non-perturbative effect modeled
- → AA: assumed outside medium, but no proof

Round table

Saturday afternoon

Discussion about the basic principles of jet quenching MC implementation

- Hybrid strong/weak coupling model
- Linear Boltzmann Transport model
- QPYTHIA
- MATTER
- MARTINI
- JEWEL

pQCD based radiative energy loss AdS/CFT based energy loss

Round table

Saturday afternoon

Discussion about the basic principles of jet quenching MC implementation

- Hybrid strong/weak coupling model Daniel Pablos
- Linear Boltzmann Transport model Tan Luo
- QPYTHIA Liliana Apolinario
- MATTER Michael Kordell
- MARTINI Sangyong Jeon
- JEWEL

5 representatives of MC models gave us a quick overview of their model. Discussion afterwards

pQCD based radiative energy loss AdS/CFT based energy loss

Hard jet production

Hard parton production for all models according to LO or NLO Glauber Ncoll profile

Parton has to be assigned a position in space-time coordinates which map to a medium

Medium and parton evolve in space-time during parton shower

MC Parton Shower

This is where jet quenching is implemented

MC Parton Shower

This is where jet quenching is implemented

Sudakov with medium modified splitting

Implemented in QPYTHIA, MARTINI, MATTER, YAJEM-BW

 $dP(t,z)=rac{lpha_s}{2\pi}P^{tot}(z)\Delta(t_0,t)dzrac{at}{t}$ Evolution variable Sudakov form factor $P^{tot}(z)=P^{vac}(z)+\Delta P^{med}(z)$

Evolution of Sudakov form factor in QPYTHIA

→Enhancement of splitting probability

Energy-momentum conservation within shower

Contains information about local medium properties
L: Medium length
q: Transport coefficient

arXiv:0907.1014 arXiv:0909.5118

Medium modified splitting

Implemented in QPYTHIA, MARTINI, MATTER, YAJEM-BW

Includes elastic, radiative and conversion processes Relative contributions controlled by weights

Total interaction probability given by local conditions

$$P = \sum_{i} \Delta t_{local} \int dk \frac{d\Gamma_{i}}{dk}$$

Radiative: emission rate from AMY

arXiv:0909.2037, arXiv:0911.4470

Sudakov with medium modified splitting

Implemented in QPYTHIA, MARTINI, MATTER, YAJEM-BW

Modified virtuality evolution
Radiative energy loss: higher twist
Few scatterings per emission limit
Sudakov form factor modified

E, M (GeV) $\dot{\mathbf{q}} = 1 \text{ GeV}^2/\text{fm}, 2 \text{ fm}$ $\hat{q} = 2 \text{ GeV}^2/\text{fm}, 2 \text{ fm}$ $\stackrel{\bullet}{\mathbf{q}} \stackrel{\wedge}{\mathbf{q}} = 1 \text{ GeV}^2/\text{fm}, 4 \text{ fm}$ L (fm)

arXiv:1301.5323

$$S_{\zeta}(Q_0^2,Q^2) = \exp\left[-\int_{2Q_0^2}^{Q^2} \frac{d\mu^2}{\mu^2} \frac{\alpha_S(\mu^2)}{2\pi} * \int_{Q_0/Q}^{1-Q_0/Q} dy P_{qg}(y) \{1 + \int_{\zeta_i^-}^{\zeta_i^- + \tau^-} d\zeta K_{p^-,\mu^2} \}\right]$$

Marta Verweii

JEWEL

Scattering of partons with medium

 \rightarrow Same as hard scatter but now incoming parton is from medium Using infrared continuation (2 \rightarrow 2) of matrix element (ME) Generates elastic and inelastic processes

Scatterings with medium

Scatterings with medium + LPM effect

Formation time: determines which emission is realised

LPM interference: governed by formation times

arXiv:1212.1599 arXiv:1111.6838

[Figures by K. Zapp – Subatech Seminar]

HYBRID

Parton shower production perturbative process

 \rightarrow use full Pythia8 parton shower + space-time through formation time of vacuum splittings ($\tau_f = \omega/k_t^2 = 2E/Q^2$)

Interaction with medium strongly coupled – hologrophy

- → Each parton in vacuum shower interacts with medium leading to energy loss
- → Energy loss rate from holography

$$rac{1}{E_{
m in}} rac{dE}{dx} = -rac{4}{\pi} rac{x^2}{x_{
m stop}^2} rac{1}{\sqrt{x_{
m stop}^2 - x^2}}$$

$$x_{ ext{stop}} = rac{1}{2\,\kappa_{ ext{sc}}}\,rac{E_{ ext{in}}^{1/3}}{T^{4/3}}$$

Broadening: transverse kicks in the fluid rest frame

Additional tool: Coherence by using resolution parameter

arXiv:1405.3864,1508.00815,1609.05842

Medium response - JEWEL recoil

Jets modify the 'background' close to it

 Partons in jet scatter with partonic constituents of medium

Consequence: energy-momentum leakage from parton shower

Need recoil partons to conserve energy-momentum

→ recoil partons also carry momentum from medium

Subtraction technique developed to subtract scattering centers which don't belong to parton shower [R.K. Elayavalli, Saturday]

Medium response - JEWEL recoil

Two extremes:

- No recoil
- With recoil but no scattering of recoil partons with medium

Recoil has large effect on jet mass

What if recoil partons would interact with the medium?

→ Brownian motion Expect jet mass to decrease

Effect of recoil on jet mass

[R.K. Elayavalli, Saturday]

Medium response in LBT

Medium excitation

Jet-induced medium partons are propagated through medium and included in jet reconstruction

Also keep track of the modified medium

Medium response in LBT

Medium excitation

Jet-induced medium partons are propagated through medium and included in jet reconstruction

Also keep track of the modified medium

Medium response in LBT

Medium excitation

Jet-induced medium partons are propagated through medium

Hadronisation

All models assume hadronisation in vacuum

→ Uncertain if this is correct → large uncertainty

Hadronisation

All models assume hadronisation in vacuum

→ Uncertain if this is correct → large uncertainty

Hadronisation is a non-perturbative process

- Vacuum generators: modeled based on experimental data
- Jet quenching MCs: almost all Lund string fragmentation model.
 Same as vacuum MC

string fragments

FSR

hadrons

Hadronisation

All models assume hadronisation in vacuum

→ Uncertain if this is correct → large uncertainty

Hadronisation is a non-perturbative process

- Vacuum generators: modeled based on experimental data
- Jet quenching MCs: almost all Lund string fragmentation model.
 Same as vacuum MC

string fragments

hadrons

Open questions:

- How to deal with medium changing color structure?
- Interplay between jet and medium hadronisation?
- What if hadronisation starts in the medium?

Vacuum baseline

Some models use PYTHIA6, others PYTHIA8: all LO

For inclusive measurement not very important

It matters for correlation observables (X-jet, jet-X, jet-jet)

→ if baseline wrong, comparison of PbPb with quenched MC not very meaningful

Limitations

From the round table discussion

We learned a lot since the first jet quenching MCs appeared

→ Newly derived phenomena can be implemented

One of the discussed items:

Coherence: not all partons radiate independently

not implemented in any model - but analytical prescription ready (in hybrid model crude phenomenological approximation)

Data vs MC

PbPb (shower + medium)
PbPb (shower)
PbPb (medium)

Rich phenomenology by comparing jet quenching MCs with data

→ Some models get ruled out or sometimes fixed Too much to go through in a systematic manner

References

Hybrid model: arXiv:1405.3864,1508.00815,1609.05842

QPYTHIA: arXiv:0907.1014, arXiv:0909.5118

MARTINI: arXiv:0909.2037, arXiv:0911.4470

JEWEL: arXiv:1111.6838, arXiv:1212.1599

LBT: arXiv:1503.03313, arXiv:1605.06447

MATTER: arXiv:1301.5323

backup

QCD Parton shower in vacuum

Collinear factorization → DGLAP evolution
Altarelli-Parisi splitting function describe 1→ 2 splitting process

Vacuum recoil scheme: spectators absorb the recoil if splitter has zero on-shell mass, kinetic energy is absorbed from spectator

$$\frac{\mathrm{d}}{\mathrm{d} \log(t/\mu^2)} f_q(x,t) q = \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_{f_q(x/z,t)}^{P_{qq}(z)} q + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_{f_g(x/z,t)}^{P_{gq}(z)} q + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi}$$

$$\frac{\mathrm{d}}{\mathrm{d}\log(t/\mu^2)} f_g(x,t) = \sum_{i=1}^{g} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_{f_q(x/z,t)}^{P_{qg}(z)} f_g(x) \int_x^g \int_z^{q_g(z)} \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_z^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \frac{\alpha_s}{2\pi} \int_z^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \frac{\alpha_s}{2\pi} \int_z^1 \frac{\mathrm{d}z}{z$$

DGLAP evolution of PDFs. Ref: S. Hocke arXiv:1411.4085

Existing MCs

HYDJET++/PYQUEN

Energy loss kernel inspired by BDMPS
Generates full HI events (including soft particle production)

HIJING

Medium induced parton splitting process

Generates full HI events (including soft particle production)

QPYTHIA (+ QHERWIG)

Medium-enhanced splitting probability. Dynamical scattering centers. Only parton shower + hadronization

MARTINI

Based on AMY energy loss kernel + elastic scatterings Only parton shower + hadronization

Existing MCs

JEWEL

ME into infrared limit. Unified description of ME+PS emissions. Elastic scatterings Only parton shower + hadronization

YAJEM

Parton gains virtuality through interactions with the medium Only parton shower + hadronization

MATTER++

Higher twist energy loss. Space-time evolution Only parton shower + hadronization

LBT

Only parton shower + hadronization

Hybrid

Only parton shower + hadronization

Radiative and collisional scatterings

Collisional / elastic

Radiative

