Monte Carlo simulations of hard probes Many thanks to: all MC speakers and authors + Leticia Cunqueiro, Abhijit Majumder, Liliana Apolinario Marta Verweij (CERN) September 2016 Hard Probes, Wuhan # Why do we need MCs? Many experimental observables are not calculable from first principles or too complicated Allow theoretical and experimental studies of complex multiparticle physics Study the effect of a certain phenomenon on specific observables in case analytically not possible For interpretation of experimental measurements To improve precision of experimental data All this requires theory-experiment interaction # Improving data quality with help from MCs Feasibility studies – predict rate of certain process + quenching sensitivity for a observable Simulate background – analysis strategy design Study detector requirements – for new facilities and upgrades Study detector resolution and efficiency → for example: quenching uncertainty on jet energy scale # Full MC event in vacuum Hard scattering Initial state radiation (ISR) Multi parton interactions (MPI) Final state radiation (FSR) Color reconnections Hadronization . . . # QCD Parton shower in vacuum Probabilistic process. (cross section is not affected) Collinear factorization \rightarrow DGLAP evolution (Q₁>Q₂>Q₃...) Altarelli-Parisi splitting functions describe $1\rightarrow 2$ splitting process Key difference between the various generators is the evolution variable: virtuality Q^2 , transverse momentum k_T , angle θ → All the same in the collinear limit # MC ingredients for hard processes ### Hard jet production – matrix elements → The same for vacuum and quenched MC ### Final state parton shower - → pp: resummation of collinear logarithms (LL) - → AA: quenching implementation model dependent ### Initial state parton shower - → pp: similar to final state parton shower - → AA: nPDFs, otherwise unchanged ### Hadronisation - > pp: non-perturbative effect modeled - → AA: assumed outside medium, but no proof ### Round table Saturday afternoon Discussion about the basic principles of jet quenching MC implementation - Hybrid strong/weak coupling model - Linear Boltzmann Transport model - QPYTHIA - MATTER - MARTINI - JEWEL pQCD based radiative energy loss AdS/CFT based energy loss ### Round table Saturday afternoon Discussion about the basic principles of jet quenching MC implementation - Hybrid strong/weak coupling model Daniel Pablos - Linear Boltzmann Transport model Tan Luo - QPYTHIA Liliana Apolinario - MATTER Michael Kordell - MARTINI Sangyong Jeon - JEWEL 5 representatives of MC models gave us a quick overview of their model. Discussion afterwards pQCD based radiative energy loss AdS/CFT based energy loss # Hard jet production Hard parton production for all models according to LO or NLO Glauber Ncoll profile Parton has to be assigned a position in space-time coordinates which map to a medium Medium and parton evolve in space-time during parton shower ### MC Parton Shower This is where jet quenching is implemented ### MC Parton Shower This is where jet quenching is implemented # Sudakov with medium modified splitting Implemented in QPYTHIA, MARTINI, MATTER, YAJEM-BW $dP(t,z)= rac{lpha_s}{2\pi}P^{tot}(z)\Delta(t_0,t)dz rac{at}{t}$ Evolution variable Sudakov form factor $P^{tot}(z)=P^{vac}(z)+\Delta P^{med}(z)$ Evolution of Sudakov form factor in QPYTHIA →Enhancement of splitting probability Energy-momentum conservation within shower Contains information about local medium properties L: Medium length q: Transport coefficient arXiv:0907.1014 arXiv:0909.5118 # Medium modified splitting Implemented in QPYTHIA, MARTINI, MATTER, YAJEM-BW Includes elastic, radiative and conversion processes Relative contributions controlled by weights Total interaction probability given by local conditions $$P = \sum_{i} \Delta t_{local} \int dk \frac{d\Gamma_{i}}{dk}$$ Radiative: emission rate from AMY arXiv:0909.2037, arXiv:0911.4470 # Sudakov with medium modified splitting Implemented in QPYTHIA, MARTINI, MATTER, YAJEM-BW Modified virtuality evolution Radiative energy loss: higher twist Few scatterings per emission limit Sudakov form factor modified E, M (GeV) $\dot{\mathbf{q}} = 1 \text{ GeV}^2/\text{fm}, 2 \text{ fm}$ $\hat{q} = 2 \text{ GeV}^2/\text{fm}, 2 \text{ fm}$ $\stackrel{\bullet}{\mathbf{q}} \stackrel{\wedge}{\mathbf{q}} = 1 \text{ GeV}^2/\text{fm}, 4 \text{ fm}$ L (fm) arXiv:1301.5323 $$S_{\zeta}(Q_0^2,Q^2) = \exp\left[-\int_{2Q_0^2}^{Q^2} \frac{d\mu^2}{\mu^2} \frac{\alpha_S(\mu^2)}{2\pi} * \int_{Q_0/Q}^{1-Q_0/Q} dy P_{qg}(y) \{1 + \int_{\zeta_i^-}^{\zeta_i^- + \tau^-} d\zeta K_{p^-,\mu^2} \}\right]$$ Marta Verweii # **JEWEL** Scattering of partons with medium \rightarrow Same as hard scatter but now incoming parton is from medium Using infrared continuation (2 \rightarrow 2) of matrix element (ME) Generates elastic and inelastic processes Scatterings with medium Scatterings with medium + LPM effect Formation time: determines which emission is realised LPM interference: governed by formation times arXiv:1212.1599 arXiv:1111.6838 [Figures by K. Zapp – Subatech Seminar] ### **HYBRID** Parton shower production perturbative process \rightarrow use full Pythia8 parton shower + space-time through formation time of vacuum splittings ($\tau_f = \omega/k_t^2 = 2E/Q^2$) ### Interaction with medium strongly coupled – hologrophy - → Each parton in vacuum shower interacts with medium leading to energy loss - → Energy loss rate from holography $$rac{1}{E_{ m in}} rac{dE}{dx} = - rac{4}{\pi} rac{x^2}{x_{ m stop}^2} rac{1}{\sqrt{x_{ m stop}^2 - x^2}}$$ $$x_{ ext{stop}} = rac{1}{2\,\kappa_{ ext{sc}}}\, rac{E_{ ext{in}}^{1/3}}{T^{4/3}}$$ Broadening: transverse kicks in the fluid rest frame Additional tool: Coherence by using resolution parameter arXiv:1405.3864,1508.00815,1609.05842 # Medium response - JEWEL recoil Jets modify the 'background' close to it Partons in jet scatter with partonic constituents of medium Consequence: energy-momentum leakage from parton shower Need recoil partons to conserve energy-momentum → recoil partons also carry momentum from medium Subtraction technique developed to subtract scattering centers which don't belong to parton shower [R.K. Elayavalli, Saturday] # Medium response - JEWEL recoil #### Two extremes: - No recoil - With recoil but no scattering of recoil partons with medium Recoil has large effect on jet mass What if recoil partons would interact with the medium? → Brownian motion Expect jet mass to decrease ### Effect of recoil on jet mass [R.K. Elayavalli, Saturday] # Medium response in LBT Medium excitation Jet-induced medium partons are propagated through medium and included in jet reconstruction Also keep track of the modified medium # Medium response in LBT Medium excitation Jet-induced medium partons are propagated through medium and included in jet reconstruction Also keep track of the modified medium # Medium response in LBT Medium excitation Jet-induced medium partons are propagated through medium # Hadronisation All models assume hadronisation in vacuum → Uncertain if this is correct → large uncertainty # Hadronisation All models assume hadronisation in vacuum → Uncertain if this is correct → large uncertainty Hadronisation is a non-perturbative process - Vacuum generators: modeled based on experimental data - Jet quenching MCs: almost all Lund string fragmentation model. Same as vacuum MC string fragments FSR hadrons ### Hadronisation All models assume hadronisation in vacuum → Uncertain if this is correct → large uncertainty Hadronisation is a non-perturbative process - Vacuum generators: modeled based on experimental data - Jet quenching MCs: almost all Lund string fragmentation model. Same as vacuum MC string fragments hadrons ### Open questions: - How to deal with medium changing color structure? - Interplay between jet and medium hadronisation? - What if hadronisation starts in the medium? # Vacuum baseline Some models use PYTHIA6, others PYTHIA8: all LO For inclusive measurement not very important It matters for correlation observables (X-jet, jet-X, jet-jet) → if baseline wrong, comparison of PbPb with quenched MC not very meaningful # Limitations From the round table discussion We learned a lot since the first jet quenching MCs appeared → Newly derived phenomena can be implemented #### One of the discussed items: Coherence: not all partons radiate independently not implemented in any model - but analytical prescription ready (in hybrid model crude phenomenological approximation) ### Data vs MC PbPb (shower + medium) PbPb (shower) PbPb (medium) Rich phenomenology by comparing jet quenching MCs with data → Some models get ruled out or sometimes fixed Too much to go through in a systematic manner ### References Hybrid model: arXiv:1405.3864,1508.00815,1609.05842 QPYTHIA: arXiv:0907.1014, arXiv:0909.5118 MARTINI: arXiv:0909.2037, arXiv:0911.4470 JEWEL: arXiv:1111.6838, arXiv:1212.1599 LBT: arXiv:1503.03313, arXiv:1605.06447 MATTER: arXiv:1301.5323 # backup # QCD Parton shower in vacuum Collinear factorization → DGLAP evolution Altarelli-Parisi splitting function describe 1→ 2 splitting process Vacuum recoil scheme: spectators absorb the recoil if splitter has zero on-shell mass, kinetic energy is absorbed from spectator $$\frac{\mathrm{d}}{\mathrm{d} \log(t/\mu^2)} f_q(x,t) q = \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_{f_q(x/z,t)}^{P_{qq}(z)} q + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_{f_g(x/z,t)}^{P_{gq}(z)} \frac{\alpha_s}{2\pi}$$ $$\frac{\mathrm{d}}{\mathrm{d}\log(t/\mu^2)} f_g(x,t) = \sum_{i=1}^{g} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_{f_q(x/z,t)}^{P_{qg}(z)} f_g(x) \int_x^g \int_z^{q_g(z)} \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \int_z^1 \frac{\alpha_s}{2\pi} \int_z^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \frac{\alpha_s}{2\pi} \int_z^1 \frac{\mathrm{d}z}{z$$ DGLAP evolution of PDFs. Ref: S. Hocke arXiv:1411.4085 # Existing MCs #### **HYDJET++/PYQUEN** Energy loss kernel inspired by BDMPS Generates full HI events (including soft particle production) #### HIJING Medium induced parton splitting process Generates full HI events (including soft particle production) ### **QPYTHIA (+ QHERWIG)** Medium-enhanced splitting probability. Dynamical scattering centers. Only parton shower + hadronization #### **MARTINI** Based on AMY energy loss kernel + elastic scatterings Only parton shower + hadronization # Existing MCs #### **JEWEL** ME into infrared limit. Unified description of ME+PS emissions. Elastic scatterings Only parton shower + hadronization #### **YAJEM** Parton gains virtuality through interactions with the medium Only parton shower + hadronization #### MATTER++ Higher twist energy loss. Space-time evolution Only parton shower + hadronization #### LBT Only parton shower + hadronization ### **Hybrid** Only parton shower + hadronization # Radiative and collisional scatterings Collisional / elastic Radiative