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Introduction

Factorization and evolution

Collinear factorization in pA

In the Bjorken limit (p2
⊥ ∼ s → +∞):

d2σpA→h+X

d2p⊥
=

∑

i,j,l=qf ,q̄f ,g

∫ 1

0

dx1

∫ 1

0

dx2 fi/p(x1;µ2
F ) fj/A(x2;µ2

F )

×
∫ 1

0

dz

z2
Dh/l(z ;µ2

F )
dσij→l+X ′

d2k⊥
(x1x2s, k⊥ = p⊥/z ;µ2

F )

(
1 + O

(
1

p2
⊥

))

Partonic cross-section calculable in pQCD: short range QCD interaction

PDFs fi/p,A(z , µ2
F ) and FFs Dh/i (z ;µ2

F ) non-perturbative but universal:
process independent

Independence of observables on µ2
F ⇒ DGLAP equations for fi (z , µ2

F )

In the end: natural choice: µ2
F ∼ p2

⊥, in order to resum large log(p2
⊥/µ

2
F ).

Initial condition for fi/p,A(z , µ2
F ) obtained from fit on DIS, DY, ...

Initial condition for Dh/i (z ;µ2
F ) obtained from fit on e+e− → h, SIDIS, ...
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Introduction

Factorization and evolution

Other types of factorization

Collinear factorization not enough for processes with several
well-separated large scales, for example:

Quasi back-to-back dijet production: require TMD factorization,
with CSS resummation (which includes Sudakov double log
resummation)

Regge-Gribov limit: for s � p⊥, ..., high-energy log(s/p2
⊥) more

important than DGLAP log(p2
⊥/µ

2
F )

High-energy resummation performed with

the BFKL evolution in the dilute hadron case
the B-JIMWLK or BK evolution in the dense hadron or nucleus case
(gluon saturation/CGC). → Main focus of this talk.
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Introduction

Factorization and evolution

A few recent works

Relevant recent works that I will not discuss further in this talk:

Sudakov resummation for multi-scale high-energy processes with
gluon saturation
Mueller, Xiao, Yuan (2012-2013)

Compatibility of TMD, BFKL and CGC factorization formalisms for
forward dijets in pA collisions
Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren (2015-2016)

Unification of low-x and CSS/Sudakov evolutions for TMD PDFs
Balitsky, Tarasov (2015-2016); Kovchegov, Sievert (2015); Zhou (2016)

+ Many articles about spin physics at low-x
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Introduction

High-energy factorization for dense-dilute processes

Universality of high-energy/CGC factorization

Many processes can be written in terms of the same non-perturbative
objects like the dipole-target amplitude.

⇒ 3 steps program:

ep, eA : Fits of the dipole-target amplitude, using high-energy evolution
equations

pp, pA : Check of the universality of the high-energy factorization, and
further constraints

AA : Calculate Glasma initial conditions from first principles and from
previous experimental constraints
→ Use JIMWLK factorization formulae for AA from
Gelis, Lappi, Venugopalan (2008-2009)

Example for the first two steps: talk by Mäntysaari

Preliminary realization of the complete programm: IP-Glasma model
Schenke, Tribedy, Venugopalan (2012)
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Introduction

High-energy factorization for dense-dilute processes

Dipole factorization for DIS at LO

⊗ ⊗

(1−z1)q
+, x0

z1q
+, x1

q+, Q2

x+ = −∞ x+ = +∞x+ = 0

σγp→X
T ,L (xBj ,Q

2) = 4Nc αem

(2π)2

∑
f e2

f

∫
d2x0 d

2x1

∫ 1

0

dz1

×Iqq̄,LOT ,L (x01, z1,Q
2)
[
1− 〈S01〉Y

]

Bjorken, Kogut, Soper (1971); Nikolaev, Zakharov (1990)

Dipole operator: S01 =
1

Nc
Tr
(

UF (x0) U†F (x1)
)

with ”rapidity” Y ∼ log(1/xBj) for xBj → 0.
→ Dependence of 〈S01〉Y on Y comes from high-energy (low-xBj) LL
resummation.
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Introduction

High-energy factorization for dense-dilute processes

B-JIMWLK and BK evolutions

RG evolution for the dipole amplitude at LL accuracy:

∂Y 〈S01〉Y =
2αsCF

π

∫
d2x2

2π

x2
01

x2
02 x2

21

〈S012−S01〉Y

= ᾱ

∫
d2x2

2π

x2
01

x2
02 x2

21

〈S02S21−S01〉Y

with ᾱ = Ncαs/π, and the qq̄g tripole operator

S012 ≡
1

NcCF
Tr
(
UF (x0)taU†F (x1)tb

)
Uba
A (x2) =

Nc

2CF

[
S02 S21 −

1

N2
c

S01

]

New operator 〈S012〉Y or 〈S02S21〉Y appears ⇒ only the first equation in
B-JIMWLK infinite hierarchy.

In practice: truncate the hierarchy with the approx
〈S02S21〉Y ' 〈S02〉Y 〈S21〉Y to get the BK equation.
Balitsky (1996); Kovchegov (1999)
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Introduction

High-energy factorization for dense-dilute processes

Forward single-inclusive particle production in pA at LO

x0

k⊥

x1

dσpA→q+X

dy d2k⊥
=

1

(2π2)

∑

f

x qf (x , µ2
F )

∫
d2x0

∫
d2x1 e−ik⊥·(x0−x1) 〈S01〉Y

with x = ey |k⊥|/
√

s and Y = y + log(|k⊥|/
√

s)

Fragmentation functions and gluon channel can be included easily.
→ Hybrid factorization
Dumitru, Hayashigaki, Jalilian-Marian (2002-2006)
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Introduction

High-energy factorization for dense-dilute processes

Eikonal approximation and factorization schemes

x− x+

Proj. p

h
TargetA

Light-cone kinematics for forward hadron production in pA
? Power corrections in s dropped
? Target put on an light-like trajectory to simplify calculations
⇒ Unphysical rapidity divergences are induced from high-energy LLs.
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Introduction

High-energy factorization for dense-dilute processes

Eikonal approximation and factorization schemes

x− x+

Proj. p

h
phys.A

eikonal A

High-energy/eikonal approximation:
? Power corrections in s dropped
? Target put on an light-like trajectory to simplify calculations
⇒ Unphysical rapidity divergences are induced from high-energy LLs.
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Introduction

High-energy factorization for dense-dilute processes

Eikonal approximation and factorization schemes

x− x+

Proj. p

h
cutoff

eikonal A

fact. scale

low x evol.

Y

High-energy LL → large log range Y between:
? Cutoff for the rapidity div., set by a physical scale of the target
? Factorization scale, close to the produced hadron
⇒ Unphysical rapidity divergences are induced from high-energy LLs.
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Introduction

High-energy factorization for dense-dilute processes

Eikonal approximation and factorization schemes

x− x+

Proj. p

h
cutoff

eikonal A

fact. scale

low x evol.

Y

Ex. 1: k− factorization scheme
? Cutoff k−max = x0 P−T
? Factorization scale k−f
⇒ Range for the evolution: Y−f = log(k−max/k−f ).
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Introduction

High-energy factorization for dense-dilute processes

Eikonal approximation and factorization schemes

x− x+

Proj. p

h
cutoff

eikonal A

fact. scale

low x evol.

Y

Ex. 2: k+ factorization scheme
? Cutoff k+

min = Q2
0/2x0 P−T = Q2

0 P+
P /x0 s

? Factorization scale k+
f

⇒ Range for the evolution: Y +
f = log(k+

f /k+
min) = log(x0 s k+

f /Q2
0 P+

P ).
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Introduction

Phenomenology at LO/LL

DIS phenomenology
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Comparison with data on F

Fits of the reduced DIS cross-section σr and its charm contribution σrc at
HERA data with numerical solutions of the running coupling BK
equation.
Albacete, Armesto, Milhano, Quiroga, Salgado (2011)
see also: Kuokkanen, Rummukainen, Weigert (2012);

Lappi, Mäntysaari (2013); . . .

Good fit, but require a big rescaling of ΛQCD as extra parameter, to slow
down the BK evolution.
→ Mimics missing higher order contributions, like a K -factor.
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Phenomenology at LO/LL

Phenomenology for single-inclusive particle production
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dAu @ 200 GeV

(only elastic term)

Fits of the single-inclusive hadron or pion production cross-section at
forward rapidity in p-p and d-Au collisions at RHIC, using the hybrid
factorization at LO, and running coupling BK evolution.

Similar results at LHC (p-p and p-Pb) and Tevatron (p-p) at central
rapidity, using k⊥-factorization.

Albacete, Dumitru, Fujii, Nara (2013)

see also: Albacete, Marquet (2010); Lappi, Mäntysaari (2013); . . .
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High-energy evolution at NLL and collinear resummations

High-energy NLL evolution equations

Status of the calculations for the NLL evolution

The NLO corrections to the evolution equations are known, allowing in
principle NLL resummations: ᾱ(ᾱ log(s))n

Calculation of the NLL BK equation:
Balitsky, Chirilli (2008)

Construction of the NLL Balitsky’s hierarchy and the NLL JIMWLK
equation
Balitsky, Chirilli (2013); Kovner, Lublinsky, Mulian (2013)

(Use NLL BK and previous calculations of corrections to 3 quarks
scattering on a target: Grabovsky (2013) )

Direct calculation of the NLL JIMWLK equation:
Mulian, Lublinsky : to appear

Moreover: Proof that observables like DIS or like particle production
obey the same NLL equation (despite crossing of Wilson lines from the
complex conjugate amplitude to the amplitude)
Mueller, Munier (2012)
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High-energy evolution at NLL and collinear resummations

High-energy NLL evolution equations

Problems with the NLL evolution
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First numerical simulations of the NLL BK equation show pathologies:

The probability of interaction of a very small dipole with the target
decreases with energy, and becomes negative!

⇒ Unphysical behavior, and makes the numerics completely
unstable...

⇒ Issues come from double (and single ?) collinear logs appearing
in the NLL BK kernel

Lappi, Mäntysaari (2015)
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High-energy evolution at NLL and collinear resummations

High-energy NLL evolution equations

Problems with the NLL evolution: same as BFKL

Similar large unphysical corrections were found in the NLL BFKL
equation, induced by:

Kinematical inconsistencies in the LL evolution (double logs).

Non-optimal running coupling prescription in the LL evolution
(single logs).

Dynamical corrections induced from DGLAP evolutions of the
colliding particles, due to the duality between low xBj and high Q2

evolutions (single logs).

→ All these corrections have been resummed (collinear resummations) in
order to get sensible results with BFKL at NLL accuracy.
Ciafaloni, Colferai, Salam, Staśto (1998-2007)

Altarelli, Ball, Forte (1999-2008)
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High-energy NLL evolution equations

Problems with the NLL evolution: same as BFKL

Similar large unphysical corrections were found in the NLL BFKL
equation, induced by:

Kinematical inconsistencies in the LL evolution (double logs).

Non-optimal running coupling prescription in the LL evolution
(single logs).

Dynamical corrections induced from DGLAP evolutions of the
colliding particles, due to the duality between low xBj and high Q2

evolutions (single logs).

→ All these corrections have been resummed (collinear resummations) in
order to get sensible results with BFKL at NLL accuracy.
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High-energy evolution at NLL and collinear resummations

High-energy NLL evolution equations

Problems with the NLL evolution: same as BFKL

Similar large unphysical corrections were found in the NLL BFKL
equation, induced by:

Kinematical inconsistencies in the LL evolution (double logs).

Non-optimal running coupling prescription in the LL evolution
(single logs).

Dynamical corrections induced from DGLAP evolutions of the
colliding particles, due to the duality between low xBj and high Q2

evolutions (single logs).

And gluon saturation cannot help to avoid theses problems, as shown
numerically in a simplified setup.
Avsar, Staśto, Triantafyllopoulos, Zaslavsky (2011)

, (-)
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High-energy evolution at NLL and collinear resummations

Kinematical improvement for BFKL

Kinematical improvement for BFKL

Usual kinematical regime considered to derive
the (LL) BFKL equation:
for example

k+
0 � k+

1 � · · · � k+
n � . . .

and
k0

2 ' k1
2 ' · · · ' kn

2 ' . . .

But the kn are then integrated over without
restriction.

⇒ Second condition not consistent nor
meaningful.

k0

k1

k2

k3

k4

k5

pa

pb

q1

q2

q3

q4

q5
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High-energy evolution at NLL and collinear resummations

Kinematical improvement for BFKL

Kinematical improvement for BFKL

Approximations required in the derivation of
the BFKL equation are valid only if successive
gluon are strongly ordered in k+ and in k−

simultaneously:

k+
0 � k+

1 � · · · � k+
n � . . .

and
k−0 � k−1 � · · · � k−n � . . .

⇒ Successive gluons are ordered in lifetime
both from the projectile (k−) and from the
target (k+) point of view.

⇒ Defines the correct kinematical phase space
for high-energy LL.
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High-energy evolution at NLL and collinear resummations

Kinematical improvement for BFKL

Kinematical improvement for BFKL

In each factorization scheme, only the ordering
along the chosen evolution variable is
guarantied.

Example: factorization scheme with regulator
k+
min and evolution over Y +

f = log(k+
f /k+

min)
⇒ strong ordering in k+.

Then, ordering in k− has to be imposed in the
BFKL equation, by a restriction on the k⊥
integration, since k−n = k2

n⊥/2k+
n .

→ Kinematical consistency constraint

Ciafaloni (1988); Andersson, Gustafson,
Kharraziha, Samuelsson (1996);

Kwieciński, Martin, Sutton (1996)

Analog in Mellin space: Salam (1998)
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High-energy evolution at NLL and collinear resummations

Kinematically consistent BK equation

Kinematical consistency constraint in the dipole picture

Real contribution to BK (in k+ factorization scheme):

Dipole splitting x01 7→ x02 + x21 by emission of a soft gluon (k+
2 , x2)

With consistent treatment of kinematics:

No contribution to LLs from gluons with small but finite k+
2 emitted at

parametrically large distances, as k+
2 x2

02 ' k+
2 x2

21 &
√

k+
0 k+

1 x2
01.

Physical interpretation: splitting of the parent dipole into too large
daugther dipoles violate lifetime ordering of the fluctuations in the
projectile.

Need to include a restriction θ
(
k+
f x2

01−k+
2 |x02 · x21|

)
for the real term in

the integral version of BK.

Modification of the virtual term then obtained by unitarity.

G.B. (2014) (see also Motyka, Staśto (2009))
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High-energy evolution at NLL and collinear resummations

Kinematically consistent BK equation

Kinematically consistent BK equation

Rewriting this improved BK equation as an integro-differential equation:

∂Y + 〈S01〉Y + = ᾱ

∫
d2x2

2π

x2
01

x2
02 x2

21

θ(Y +−∆012)

×
{〈
S02S21−

1

N2
c

S01

〉

Y +−∆012

−
(

1− 1

N2
c

)
〈S01〉Y +

}

G.B. (2014)

∆012 = max

{
0, log

( |x02 · x21|
x2

01

)}

so that

∆012 = 0 for x2
02 . x2

01 and x2
21 . x2

01

∆012 ∼ log

(
x2

02

x2
01

)
∼ log

(
x2

21

x2
01

)
for x2

01 � x2
02 ∼ x2

21
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Kinematically consistent BK equation

Kinematically consistent BK equation

Rewriting this improved BK equation as an integro-differential equation:

∂Y + 〈S01〉Y + = ᾱ

∫
d2x2

2π

x2
01

x2
02 x2

21

θ(Y +−∆012)

×
{〈
S02S21−

1

N2
c

S01

〉

Y +−∆012

−
(

1− 1

N2
c

)
〈S01〉Y +

}

G.B. (2014)

? Reduction of the phase space by the theta function
? Non-locality of the real emission term

⇒ Both modifications slow down the BK evolution,
especially at smaller Y +.

Moreoever: Taylor-re-expanding around ∆012 = 0:
one reproduces the problematic terms ∼ ∆2

012 present in the BK equation
at NLL, plus a tower of higher order terms of that type.

⇒ kcBK provides a more accurate LL resummation than standard BK.
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High-energy evolution at NLL and collinear resummations

Kinematically consistent BK equation

Other prescription for kinematical improvement of BK

The resummation of the same kinematical double logs can also be done
for BK (still in k+ scheme) keeping transverse and LC variables separated:

∂Y +〈̃S01〉Y + = ᾱ

∫
d2x2

2π

x2
01

x2
02 x2

21

[
J1(2

√
ᾱρ2

012)√
ᾱρ2

012

][
〈̃S02〉Y +〈̃S21〉Y +−〈̃S01〉Y +

]

where ρ2
012 ≡ log

(
x2

02

x2
01

)
log
(

x2
21

x2
01

)

Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2015)

Caveat: The solution 〈̃S01〉Y + obeys a modified initial condition, and
coincide with the physical 〈S01〉Y + only in the most interesting range
Y + > ρ012.
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High-energy evolution at NLL and collinear resummations

Kinematically consistent BK equation

Other prescription for kinematical improvement of BK
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ᾱρ2

012)√
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High-energy evolution at NLL and collinear resummations

Others effects beyond kinematical improvement

Running coupling: Balitsky’s prescription

Running coupling log terms in NLL BK kernel:

ᾱµ
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b log

(
x2

01 µ
2

4

)
− 2b Ψ(1)− b

(x2
02−x2

21)

x2
01

log
(

x2
02

x2
21

)
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Balitsky’s running coupling prescription:

ᾱµ
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ᾱ(x02)
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ᾱ(x02)
− 1

)}

NLL terms contained in Balitsky’s prescription are exactly the b
terms in NLL BK
⇒ Balitsky’s prescription enough to resum RC single logs

Higher order terms in the prescription guessed from renormalon
arguments.

However: non positive-definite kernel

Strong sensitivity to freezing prescription in the IR
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ᾱ(x21)
− 1

)
+

1

x2
21

(
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High-energy evolution at NLL and collinear resummations

Others effects beyond kinematical improvement

Running coupling: BLM prescription

Other possible running coupling prescription: BLM

⇒ Choose µ = QBLM to cancel the RC terms in NLL BK:

ᾱµ 7→ ᾱ(QBLM) where Q2
BLM ≡

4e2Ψ(1)

x2
01

(
x2

02

x2
21

)(x2
02−x2

21)/x2
01

Includes the same NLL terms as Balitsky’s prescription ⇒ ok for RC
single log resummation

Differ only by terms of order NNLL and higher

Leads to a positive-definite rcBK kernel

Very weak sensitivity on the details of the IR freezing of ᾱ

→ Perturbatively equivalent to the RC prescription mistakenly called FAC
given in
Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2015)

written there in a more IR sensitive way.
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High-energy evolution at NLL and collinear resummations

Others effects beyond kinematical improvement

Dealing with the last single logs in NLL BK

Last step missing for the collinear resummation of NLL BK:

Single logs induced by the non-sigular part of DGLAP splitting functions

By very far the most difficult part of the problem! No genuine all order
resummation known yet.

However, simple exponentiation prescription enough to deal with the
single logs explicitly appearing in NLL BK at large Nc :

x2
01

x2
02 x2

21

7→ x2
01

x2
02 x2

21

exp

{
−11

12
ᾱ

∣∣∣∣log

(
x2

01

min{x2
02, x

2
21}

)∣∣∣∣
}

Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2015)

→ Analog to the prescription given in
Gotsman, Levin, Maor, Naftali (2004)

but should be much more stable numerically.
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High-energy evolution at NLL and collinear resummations

Practical applications

Numerics for NLL BK with collinear resummations
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Qs,0/ΛQCD = 2

Including these collinear resummations, numerical simulations of the NLL
BK equation now stable.

Lappi, Mäntysaari (2016)

⇒ NLL BK can in principle be used in future phenomenological studies
and global fits at NLO+NLL accuracy. Important milestone!
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High-energy evolution at NLL and collinear resummations

Practical applications

DIS phenomenology at LO + kcLL accuracy
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Albacete (2015)

Good fits to HERA data can be obtained with both the non-local and
local implementations of the kinematical improvement of BK.
⇒ Good starting point for further studies at NLO and/or NLL.

See also Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2015)
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DIS at NLO

DIS at NLO in the dipole factorization

Earlier calculations of NLO corrections to DIS cross-section:
Balitsky, Chirilli (2011); G.B. (2012)

However, in both papers only qq̄g NLO contributions to DIS were
calculated explicitly, whereas qq̄ NLO corrections were guessed.

Results from Balitsky, Chirilli (2011) more general but not available
in a form convenient for numerical studies

Guess for the qq̄ contribution at one loop in G.B. (2012) not correct:
⇒ explicit one-loop calculations required

Calculation of γ∗T ,L → qq̄ LF wavefunctions at one loop
G.B. (2016)

Combination of qq̄ and qq̄g parts of the NLO corrections to DIS
structure functions
G.B., in preparation

⇒ Final results for DIS at NLO in the dipole factorization soon available
in a convenient form!
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DIS at NLO: full fixed-order results
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G.B. (2012-2016)
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DIS at NLO: LL resummation

Method for the LL resummation in the k+ scheme for NLO DIS:

1 Assign k+
min to the scale set by the target: k+

min =
Q2

0

2x0 P−
=

xBj Q
2
0

x0 Q2 q+

2 Choose a factorization scale k+
f . k+

0 , k
+
1 , corresponding to a range

for the high-energy evolution Y +
f ≡ log

(
k+
f

k+
min

)
= log

(
x0 Q

2 k+
f

xBj Q2
0 q+

)

3 In the LO term, make the replacement

〈S012〉0 = 〈S012〉Y +
f
−
∫ Y +

f

0

dY +
(
∂Y +〈S012〉Y +

)

with both terms calculated with the same evolution equation

4 Combine the second term with the NLO correction to cancel its k+
min

dependence and the associated large logs.

⇒ More accurate subtraction of LL from NLO with the kinematically
consistent LL BK equation than with the naive LL BK equation
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Single inclusive production at NLO

Calculations for single inclusive production at NLO

NLO corrections for the hybrid factorization of forward single inclusive
hadron production in pA

Massless partons contributions:
Chirilli, Xiao, Yuan (2012) (see also Altinoluk, Kovner (2011)))

Heavy quark contributions (in FFNS):
Altinoluk, Armesto, G.B., Lublinsky, Kovner (2016)

In the massless case, the NLO corrections have various log contributions
(and divergences) which have to be disentangled and resummed:

Initial state collinear radiation, associated with the DGLAP evolution
for the projectile PDF.

Final state collinear radiation, associated with the DGLAP evolution
for the FF into the produced hadron.

Low-x radiation, associated with the high-energy JIMWLK/BK
evolution of the target

After subtracting and resumming these, the leftover NLO correction
should be well-behaved, but...
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Single inclusive production at NLO

Problem with numerical results

First numerical implemention of NLO corrections (with LL resummation):

0 1 2 3
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Forward single inclusive hadron production in d-Au at RHIC
Staśto, Xiao, Zaslavsky (2013)

Good at small p⊥, but large negative NLO corrections at large p⊥ ! The
cross-section even becomes negative!

⇒ Calculation of NLO corrections needs to be revisited...
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Single inclusive production at NLO

Isolating the problem

Perturbative NLO calculations have been redone independently: ok!
Altinoluk, Armesto, G.B., Lublinsky, Kovner (2015)

IS (projectile) and FS DGLAP resummation: ok!

High-energy LL resummation not done in a consistent factorization
scheme in the initial calculation:
Unrelated to the regularization of the rapidity divergence!
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Single inclusive production at NLO

Trying to solve the problem

Many proposals to improve the situation:

Staśto, Yuan, Xiao, Zaslavsky (2014)
Altinoluk, Armesto, G.B., Lublinsky, Kovner (2015)
Watanabe, Yuan, Xiao, Zaslavsky (2015)
Ducloué, Lappi, Zhu (2016)

Iancu, Mueller, Triantafyllopoulos (2016)

Main ingredients in most of these:

Try improve consistency between :

1 Regularization of rapidity divergence
2 Subtraction of high-energy LL from NLO results
3 Resummation of high-energy LL into LO term

Use factorization scheme along k− (a.k.a. Ioffe time) in order to
optimize matching between BK and DGLAP for the target

However, many details differ between these prescriptions.
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Single inclusive production at NLO

Newer numerical tests

Some of these new prescriptions have been tested numerically, for
example:
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⇒ Quantitative improvement, but seem to rather delay than fully solve
the negativity problem...

Similar numerical results have been obtained in:
Ducloué, Lappi, Zhu (2016)
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Single inclusive production at NLO

2 Additional issues for pA at NLO

Small problem: NLL BK and collinear resummations available in the
k+ factorization scheme but not in the k− scheme.
⇒ We should perform LL subtractions/resummations for NLO
corrections in pA in the k+ scheme, not the k− one, when
attempting to reach NLL precision.

Big problem: incoming and outgoing partons on-shell in the hybrid
factorization
⇒ No k− restriction on the phase-space from the projectile side
⇒ High-energy LL term ecountered in the NLO corrections in pA
does not obeys kinematical improvement, by contrast to the LL
contribution in DIS at NLO
⇒ High-energy factorization on the target side broken by the
collinear factorization on the projectile side ????
⇒ Need to accommodate parton virtualities or to switch from
collinear factorization to TMD factorization in the hybrid formalism
for pA ?
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Conclusions

Conclusions

High-energy factorization/CGC well on the way towards NLO+NLL
accuracy:

Partial collinear resummations have been performed for the NLL BK
equation, making its numerical solution possible and now available.

Final results for the DIS structure functions at NLO in the dipole
factorization will appear soon

Despite many efforts, the situation is still unclear concerning
high-energy resummations for the forward single-inclusive hadron
production in pA at NLO in the hybrid factorization

⇒ More analytical and numerical work and discussions needed to
reach a consensus on the correct implementation of the hybrid
factorization beyond LO+LL.
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Backup slides

γL total cross section at NLO
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UV and soft divergent terms have been moved from ṼL to the q and q̄
terms, as well as a constant 1/2 (rational term (D−4)/(D−4))
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