

Experimental summary: heavy-flavour production at the LHC

Gian Michele Innocenti Massachusetts Institute of Technology (MIT)

8th International Conference on Hard and Electromagnetic Probes of High-energy Nuclear Collisions

22-27 September 2016, Wuhan, China

My list of questions

How do heavy-quarks lose energy ? Does Eloss depends on the parton flavour?

Do we understand the HF production mechanism? How initial state effects modifies it in HI?

Do charm/beauty flow?

D and B cross sections at LHC in pp collisions

CMS D⁰ at 5.02 TeV, |y|<1.0

ATLAS B⁺ measurement at 7 TeV, |y|<2.25

- HF production cross sections well described by NLO calculations:
- →D meson upper edge of FONLL calculations
- \rightarrow B meson consistent with central values of FONLL

J.Wang and T.W.Wang's talks, Saturday

D⁰ production in pPb collisions

ALICE D measurements at 5.02 TeV, |y|<0.5

 R_{pA} well described by Cold Nuclear Matter (CNR) models and consistent with unity at high p_T !

Not possible to discriminate between various models with current uncertainties

D^0 meson R_{pA} at $5.02\,\text{TeV}$

LHCb D^0 measurement at 5.02 TeV in forward(F) and backward (B) region as a function of transverse momentum and rapidity

 R_{PA} and R_{FB} described by to NLO prediction that include EPS09 parametrisation of the nuclear PDFs

X. Zhu's talk, Saturday

B meson production in pPb collisions

Heavy flavour leptons: LHC vs. RHIC

ALICE heavy flavour electrons (c,b→muons) in pPb collisions at 5.02 TeV

forward (shadowing) backward (anti-shadowing)

Models with CNM describe forward/backward rapidity at LHC

PRL112 (2014) 252301

Heavy flavour leptons: LHC vs. RHIC

ALICE heavy flavour muons (c,b→muons) in pPb collisions at 5.02 TeV

My list of questions

How do heavy-quarks lose energy ? Does Eloss depends on the parton flavour?

Do we understand the HF production mechanism? How initial state effects modified it in HI?

Do charm/beauty flow?

D meson R_{AA} in 0-10%

CMS D⁰ R_{AA} |y|<1.0 at 5.02 TeV

ALICE D⁰ R_{AA} |y|<0.5 at 2.76 TeV

Comparison to theoretical calculations

CMS-PAS-HIN-16-001

 $D^0 R_{AA}$ measurement is well described by theoretical calculations! Seems to favour calculations that include:

- both collisional and radiative energy loss
- shadowing

J.Wang's talks, Saturday

R_{AA} of heavy flavour muons

 R_{AA} of heavy-flavour muons at 2.76 TeV from ATLAS

Strong suppression observed for for HF muons! Clear suppression pattern observed as a function of centrality

Q. Hu's talk, Saturday

R_{AA} of beauty electrons

ALICE R_{AA} of beauty electrons (b \rightarrow c \rightarrow e⁺⁻) at 2.76 TeV

Strong suppression observed for heavy-flavour (c,b) electrons and beauty electrons

Indication of difference suppression for charm and beauty electron vs. beauty electrons

A.Dubla's talks, Saturday

R_{AA} of non prompt J/ ϕ at 2.76 TeV and 5 TeV

Exclusive B⁺ meson measurement in PbPb

CMS B⁺ production in PbPb at central rapidity |y|<2.4

Strong suppression (R_{AA}~0.4) observed in 0-100% PbPb collision for pT>7 GeV/c Well described by theoretical calculations that include radiative energy loss

T.W.Wang's talk, Saturday

Non-prompt J/ ϕ at 2.76 TeV vs B⁺ at 5.02 TeV

No tension between the two measurements!

To be handled with care!!

 B meson p_T and non prompt J/φ are different! Need to correct for different kinematic

CMS non prompt I.6<|y|<2.4 CMS non prompt |y|<2.4 ATLAS non prompt |y|<2.9 CMS B+ |y|<2.4

M. Ho's talk, Sunday

Flavour dependence of E_{loss} at 2.76 TeV

According to this model, the difference R_{AA} for non prompt J/ ψ and B can be attributed to a difference in the E_{loss} of charm and beauty quarks

Flavour dependence of Eloss at 2.76 TeV

M. Ho's talk, Sunday

Flavour dependence of E_{loss} at 5.02 TeV

 R_{AA} of B, D and charged particle fully compatible within uncertainties in the available p_T range (**REMEMBER**: $p_T^B > 7$ GeV/c)

B meson D meson charged particle

Does it mean that there is no flavour dependence? Not necessarily!

T.W.Wang's talk, Saturday

Flavour dependence at higher pT

C.C. Peng's talk, Saturday

b-jet R_{AA} inclusive jet R_{AA}

Same suppression for b-jets and inclusive jets at high p_T Mass difference negligible at high p_T

 \rightarrow Large contribution of gluon splitting processes? In GSP case, we are not measuring the b-quark E_{loss} but to some "fat" gluon E_{loss}

Flavour dependence at higher pT

C.C. Peng's talk, Saturday b-jet R_{AA} inclusive jet R_{AA}

NLO process: Gluon splitting ~20%
→ dominant at low opening angles

Same suppression for b-jets and inclusive jets at high p_T Mass difference negligible at high p_T

 \rightarrow Large contribution of gluon splitting processes? In GSP case, we are not measuring the b-quark E_{loss} but to some "fat" gluon E_{loss}

Di-b-jet measurement in PbPb at 5.02 TeV

 \rightarrow In back-to-back events $b\bar{b}$ production via gluon splitting processes is negligible

C.C. Peng's talk, Saturday

Di-b-jet measurement in PbPb at 5.02 TeV

There is no significant difference in the suppression of inclusive and b-jets even after excluding the contribution of gluon splitting processes

C.C. Peng's talk, Saturday

My list of questions

Does *E*_{loss} depends on the parton flavour? π^+ Κ D 000000 c-quark

Do we understand the HF production mechanism? How initial state effects modified it in HI?

Do charm/beauty flow?

How do heavy-quarks lose energy ?

Does charm flow?

ALICE v_2 measurement in 30-50% at 2.76 TeV

BUT non zero v₂ doesn't necessarily imply that charm flows! A ~small v₂ can be generated in the recombination of "static" charm with "flowing" light quarks!

A.Dubla's talks, Saturday

D meson v_n at 5.02 TeV in PbPb collisions

 $v_2>0$ at high $p_T \rightarrow$ path length dependence! $v_2>0$ for D⁰ at low p_T v_2 (D) > v_2 (charged particles) First observation of v₃>0 for charm! v₃ (D) > v₃ (charged particles) although with large uncertainties

Comparison with models

 v_2 and v_3 are well described by models that include charm quark diffusion AND charm recombination in the medium.

J.Sun's talks, Saturday

v_2 of non prompt J/ ϕ

New measurement of v_2 of non prompt J/ ϕ in PbPb collisions at 2.76 TeV

→Central value of v₂ of non prompt J/ ϕ but still compatible in 2 σ with 0 Looking to see the new measurement with Run2 data with higher statistics! J.Sun's talks, Saturday

D_s as a probe for charm recombination

 R_{AA} of $D_s > R_{AA} D^0$ if coalescence is a relevant production mechanisms for charm as a consequence of the strangeness enhancement in PbPb collisions

not yet significant given current uncertainties

 \rightarrow Waiting to see new D_s results with higher statistics from Run2 data!

Conclusions (I)

Do we understand the production mechanism?

 charm and beauty production are well described by pQCD calculations at both energies 2.76 and 5.02 TeV

Is the initial state modified?

- the HF production cross sections are consistent with the prediction of CNM models at LHC energies.
- measurements still not precise enough to discriminate the various CNM results (very promising results from LHCb thus..)
- Still in apparent contraction with RHIC results in which CNM based models do not describe forward/backward results (????)

Conclusions (II)

How do HF lose energies?

- charm and beauty strongly interact with the medium and lose energy
- At low p_T indications of R_{AA} (B)>R_{AA} (D)
- At high p_T (>7-10 GeV) R_{AA} (light)~R_{AA} (D)~R_{AA} (B)
- \rightarrow A conclusive statement is not not possible but:
 - sizeable radiative energy loss for charm and beauty
 - non negligible contribution of collisional processes at low p_{T}
 - hints of flavour dependence at low p_T (caveats as usual...)
 - indications of mild/no flavour dependence at higher p_{T}

Conclusions (III)

- Do heavy quarks participate in the collective expansion of the medium?
- v_2 and v_3 significantly > 0 for D^0
- v_2 and v_3 of D⁰ are slightly smaller than the values for the inclusive particles
- \rightarrow Comparison with theoretical calculations:
 - favour models that include both charm diffusion and charm recombination in the medium
 - suggests that charm participates in the collective motion of the fireball

Conclusions (III)

- Do heavy quarks participate in the collective expansion of the medium?
- v_2 and v_3 significantly > 0 for D^0
- v_2 and v_3 of D⁰ are slightly smaller than the values for the inclusive particles
- \rightarrow Comparison with theoretical calculations:
 - favour models that include both charm diffusion and charm recombination in the medium
 - suggests that charm participates in the collective motion of the fireball

Thank you for your attention!

BACKUP

Our experimental tools

Displayed J/ ψ from B decays

Semi-leptonic electrons and muons from c and b quarks

Fully reconstructed D meson decays:

- $D^0 \rightarrow K^- + \pi^+$
- D⁺ \rightarrow K⁻+ π^+ + π^+
- $D^{*+} \rightarrow D^0 + \pi^+$
- $D^+_s \rightarrow \varphi + \pi^+$

Our experimental tools

heavy quark production mechanism

LO process: Flavour Creation (FCR)

→ bb produced back-to-back in azimuthal plane and symmetric in pt

NLO process: Flavour Excitation (FEX)

→ $b\overline{b}$ pairs produced asymmetric in p_T and with a broad opening angle

NLO process: Gluon splitting (GSP)
 → produced with small opening angles and asymmetric in p_T
 → bb are not involved in the hard scattering but produced later

b

HQ production mechanisms

Do we understand the production mechanism?

- high Q² processes + large mass:
 → calculated in pQCD down to low pT
- Very short formation time ~ 0.1 fm/c
 - → much smaller than QGP formation time
 - \rightarrow production is not affected by the medium

B production at LHC in pp collisions

New measurement of $B^+ \rightarrow J/\psi K^+$ production by CMS at 5.02 TeV:

D production at LHC in pp collisions

ALICE D^{*+} at 7 TeV, |y|<0.5

CMS D⁰ at 5.02 TeV, |y|<1.0

D meson production cross sections well described by NLO calculations: $\rightarrow upper edge of FONLL calculations$

 \rightarrow consistent with central values of GM-VFNS

B production at LHC in pp collisions

B meson production cross sections well described by NLO calculations: \rightarrow compatible with central values of FONLL, GM-VFNS and k_T-factorisation

$B\overline{B} \Delta \phi$ correlations

Non-prompt J/ ϕ at 2.76 TeV vs B⁺ at 5.02 TeV

The B⁺ R_{AA} at 5.02 TeV and non-prompt J/ φ at 2.76 fully compatible within uncertainties! **BIG CAVEAT: different energies!**

DD and DD correlations

DD and $D\overline{D}$ correlations measured by LHCb at 5.02 TeV

DD correlation show an enhancement with respect to DD correlation at low $\Delta \phi$ consistent with consistent contribution from gluon splitting cc pairs produce by gluon splitting processes

HQ production as a function of multiplicity

Strong dependence of D meson yield vs multiplicity

Need to include Multi-Particle-Interaction (MPI) to describe experimental data

ALICE data favours MPI models that includes a non linear dependence vs multiplicity (hydro?)

Reminder on HF energy loss

→ In-medium energy loss as a consequence of radiative and collisional processes.

Flavour-dependence of radiative energy loss:

- Larger for gluons than for quarks E.g. in BDMPS model [1] $<\Delta E > \propto \alpha_s C_R q L^2$
- Dead cone effect: gluon radiation suppressed at small angles for massive quarks

• produced early in the collision, they strongly interact with the deconfined medium

 $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \longrightarrow R_{AA}^B > R_{AA}^D > R_{AA}^{\text{light}} (??)$

b-jet nuclear modification factor in pPb

HQ production as a function of multiplicity

Strong dependence of D meson yield vs multiplicity

Need to include Multi-Particle-Interaction (MPI) to describe experimental data

ALICE data favours MPI models that includes a non linear dependence vs multiplicity (hydro?)

D meson RAA at 2.76 TeV

D meson R_{AA} at 2.76 TeV

Strong suppression in central PbPb events: same suppression for D⁰,D⁺,D^{*+} indicate independence from fragmentation

ALICE and CMS in good agreement Differences at higher p_T due to different pp references

D⁰ meson R_{AA} at 5.02 TeV

CMS $D^0 R_{AA} |y| < 1.0$ at 5.02 TeV

Strong suppression observed at 5.02 TeV Rising trend observed when going to high p_T

Similar suppression observed at 2.76 and 5.02 TeV by CMS and ALICE Caveat: different rapidities

CMS, 5.02 TeV, lyl<1

ALICE, 2.76 TeV, lyl<0.5

10²

Comparison with theoretical calculations

To describe $D^0 R_{AA}$ in the full p_T range, models have to include:

- both collisional and radiative energy loss
- shadowing

Comparison with RHIC

Smaller suppression at RHIC can be a consequence of different magnitude of the shadowing at RHIC vs. LHC energies x_{BJ} (200 GeV) ~ 10⁻², x_{BJ} (2.76 TeV) ~ 8 · 10⁻⁴

R_{AA} of heavy flavour muons

ALICE R_{AA} of heavy-flavour muons at 2.76 TeV and 5.02 TeV

R_{AA} of heavy-flavour muons at 2.76 TeV from ATLAS

Precise measurement of HF muons at low p_T Clear suppression pattern Same suppression observed at the two energies observed as a function of centrality

The final picture

Heavy-flavour muons at 2.76 TeV

ATLAS-CONF-2015-053

Positive v₂ for muons from heavy-flavour decays (b+c) at LHC:

• include the contributions of beauty to v_2 that is currently unknown

• v_2 of heavy flavour muons < v_2 (D⁰) from ALICE

 \rightarrow indirect indication of $v_2(b) < v_2(c)$?

D meson v_2 at 5.02 TeV in PbPb collisions

New CMS measurement of v_2 and v_3 in PbPb collisions at 5.02 TeV in different collision centralities

Significant confirmation of v₂>0 for D⁰ at 5.02 TeV: v₂ of D mesons larger than v₂ of charged particles v₂(0-10%) < v₂(10-30%) ~ v₂(30-50%)

D meson v_3 at 5.02 TeV in PbPb collisions

First observation of $v_3 > 0$ for charm!

 v_3 for charged particle larger that $D^0 v_3$ although not fully significative given current uncertainties

D and B cross sections at LHC in pp collisions

CMS D⁰ at 5.02 TeV, |y|<1.0

ATLAS B⁺ measurement at 7 TeV, |y|<2.25

D and B meson production cross sections well described by NLO calculations: $\rightarrow D$ meson upper edge of FONLL calculations

 \rightarrow B meson consistent with central values of FONLL

J.Wang and T.W.Wang's talks, Saturday

HF models overview

Table 11: Comparative overview of the models for heavy-quark energy loss or transport in the medium described in the previous sections.					
Model	Heavy-quark	Medium modelling	Quark-medium	Heavy-quark	Tuning of medium-coupling
	production		interactions	hadronisation	(or density) parameter(s)
Djordjevic et al.	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	Medium temperature
[511-515]	no PDF shadowing	nuclear overlap	finite magnetic mass		fixed separately
		no fl. dyn. evolution			at RHIC and LHC
WHDG	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	RHIC
[459, 519]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)
		no fl. dyn. evolution			
Vitev et al.	non-zero-mass VFNS	Glauber model	radiative energy loss	fragmentation	RHIC
[422, 460]	no PDF shadowing	nuclear overlap	in-medium meson dissociation		(then scaled with $dN_{ch}/d\eta$)
		ideal fl. dyn. 1+1d			
		Bjorken expansion			
AdS/CFT (HG)	FONLL	Glauber model	AdS/CFT drag	fragmentation	RHIC
[624, 625]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)
		no fl. dyn. evolution			
POWLANG	POWHEG (NLO)	2+1d expansion	transport with Langevin eq.	fragmentation	assume pQCD (or 1-QCD
[507-509, 585, 586]	EPS09 (NLO)	with viscous	collisional energy loss	recombination	U potential)
	PDF shadowing	fl. dyn. evolution			
MC@sHQ+EPOS2	FONLL	3+1d expansion	transport with Boltzmann eq.	fragmentation	QGP transport coefficient
[528-530]	EPS09 (LO)	(EPOS model)	rad. + coll. energy loss	recombination	fixed at LHC, slightly
	PDF shadowing				adapted for RHIC
BAMPS	MC@NLO	3+1d expansion	transport with Boltzmann eq.	fragmentation	RHIC
[537-540]	no PDF shadowing	parton cascade	rad. + coll. energy loss		(then scaled with $dN_{ch}/d\eta$)
TAMU	FONLL	2+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD
[491, 565, 606]	EPS09 (NLO)	ideal fl. dyn.	collisional energy loss	recombination	U potential
	PDF shadowing		diffusion in hadronic phase		
UrQMD	PYTHIA	3+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD
[608-610]	no PDF shadowing	ideal fl. dyn.	collisional energy loss	recombination	U potential
Duke	PYTHIA	2+1d expansion	transport with Langevin eq.	fragmentation	QGP transport coefficient
[587, 628]	EPS09 (LO)	viscous fl. dyn.	rad. + coll. energy loss	recombination	fixed at RHIC and LHC
	PDF shadowing				(same value)

and an an of the models. Can be used an and the second term and in the modium described in the Table 11: Co.

[1506.03981]