

# Quarkonium Experiments in Heavy-Ion Collisions

Zebo Tang (唐泽波)

University of Science and Technology of China (USTC)





## Quarkonium as a sensitive probe of QGP



- Quarkonium production suppressed due to color-screening/melting in the QGP
- Different quarkonium states provide distance scales to probe QGP (sequential suppression)



 Quaroknium production enhanced due to (re)combination during QGP evolution or hadronization

#### In reality

Quarkonium production modified by cold nuclear matter (CNM) effects on top of hot matter effects

Quarkonium production in heavy-ion collisions are the interplay of color-screening/melting, (re)combination and CNM effects

#### **Experimental solutions:**

pA: CNM effects, reference

#### AA:

- Multiple dimensional Centrality, p<sub>T</sub>, rapidity...
   Collision energy, system
- Different states  $J/\psi$ ,  $\psi(2S)$ ,  $\Upsilon(1S, 2S, 3S)$



## **Experiments**

| Accelerator | Detector | Mid-y                         | Forward      | Notes                      |
|-------------|----------|-------------------------------|--------------|----------------------------|
| RHIC        | PHENIX   | e <sup>+</sup> e <sup>-</sup> | μ+μ-         | Decommissioned             |
|             | STAR     | e+e-<br>μ+μ-                  |              |                            |
| LHC         | ALICE    | e <sup>+</sup> e <sup>-</sup> | μ+μ-         |                            |
|             | ATLAS    | $\mu^+\mu^-$                  |              | High p <sub>T</sub> muon   |
|             | CMS      | $\mu^+\mu^-$                  |              | High p <sub>T</sub> muon   |
|             | LHCb     |                               | $\mu^+\mu^-$ | pPb and peripheral<br>PbPb |

# J/w Results

#### STAR new results from $\mu^+\mu^-$



- Confirmed previously published e<sup>+</sup>e<sup>-</sup> results
- Improved precision and  $p_T$  converge

#### Centrality dependence



Low- $p_T$ : SPS ~ RHIC < LHC

More collision energies?

High-p<sub>T</sub>: (Re)combination less important
Stronger suppression at LHC than at RHIC
Higher collision energy?

#### Beam energy dependence



- SPS→RHIC: Gradually increase
- RHIC→LHC: Significantly increase
- Consistently described by transport model

#### Low-p<sub>T</sub> J/ψ in PbPb at 5 TeV



- $J/\psi$  at low- $p_T$  at forward rapidity
- Less suppression at 5 TeV than 2.76 TeV
- But consistent within normalization uncertainties dominated by 2.76 TeV pp reference extrapolation

#### **p**<sub>T</sub> dependence



- "Hint" of increase from 2.76 $\rightarrow$ 5 TeV at 2<p<sub>T</sub><6 GeV/c
- (Re)combination of flowing charm?

#### High- $p_T$ J/ $\psi$ in PbPb at 2.76TeV



- CMS final results on J/ψ in Pb+Pb at 2.76 TeV
- Better precision with finer centrality bins

#### High- $p_T$ J/ $\psi$ in PbPb at 5 TeV



- Stronger suppression of high- $p_T J/\psi$  at 5 TeV than 2.76 TeV
- Because of different p<sub>T</sub> cut?

#### **p**<sub>T</sub> dependence



- Flat at  $5 < p_T < \sim 15$  GeV/c and then increase with  $p_T$
- Stronger suppression at higher beam energy in overlapping p<sub>T</sub>

# Very low- $p_T$ J/ $\psi$ in peripheral AA





- Significant enhancement at very low p<sub>T</sub> in (semi-)peripheral PbPb Collisions
- A domain where re(combination) is negligible
- At rest in the created medium

## Very low-p<sub>T</sub> J/ψ at STAR





- Excess observed at  $p_T$ <0.1 GeV, no obvious centrality dependence
- t distribution consistent with interference, slope consistent with that of ρ in UPC

# ψ(2S) Results

## High- $p_T \psi(2S)$ in pPb







- Similar suppression in central collisions
- Hints of less suppression in peripheral collisions

#### $\psi(2S)$ in PbPb at 2.76 TeV



- Relative more suppression at p<sub>T</sub>>6.5 GeV/c
- Relative enhancement at  $p_T > 3 \text{ GeV/c}$

#### ψ(2S) in PbPb at 5 TeV



- Centrality independent suppression
- Consistent between two energies,
   but ~3σ difference in central collisions
- Precision need to be improved



## High- $p_T \psi(2S)$ in PbPb



- Significantly stronger suppression with respect to J/ψ
- Same suppression for non-prompt  $\psi(2S)$  and  $J/\psi$

# Y(1S, 2S, 3S) Results

#### $\Upsilon(1S)$ in AA



- Suppression of direct  $\Upsilon(1S)$  in central collisions?
- More suppression at forward rapidity than mid-rapidity (Re)combination?

#### Y(1S) in PbPb at 5 TeV



- Hints of stronger suppression in more forward rapidity
- Hints of less suppression at higher beam energy

Ratio(0-90%) = 
$$1.3 \pm 0.2$$
(stat.)  $\pm 0.2$ (syst.)

~1o higher than unity

#### $\Upsilon(2S)$ in PbPb



• Double ratio ~1σ higher at 5 TeV than at 2.76 TeV

#### Y(2S+3S) in AuAu at RHIC



•  $\sim 1.5\sigma$  higher at 0.2 TeV than at 2.76 TeV

CMS: JHEP 04 (2014) 103

#### $\Upsilon(3S)$ in PbPb



- Double Ratio < 0.26 (95% CL) at 5 TeV
- Double Ratio < 0.17 (95% CL) at 2.76 TeV

## **Summary (1/2)**

#### $J/\psi$

- Low-p<sub>T</sub>: Suppression decreases from 0.2 to 5 TeV (Re)combination
- High-p<sub>T</sub>: Suppression increases from 0.2 to 5 TeV
   QGP melting
- Very low-p<sub>T</sub>: Enhancement due to photo-production

$$\psi(2S) \div J/\psi$$

- Double ratio at high-p<sub>T</sub>:
  - ~1 in pPb for promt
  - <1 in PbPb for prompt
  - ~1 in PbPb for non-prompt

**QGP** melting



#### **Summary (2/2)**

#### $\Upsilon(1S)$

•  $\Upsilon(1S)$ @LHC vs. J/ $\psi$ @ RHIC (low- $\beta\gamma$ )
QGP melting + (Re)combination

$$\Upsilon(2S, 3S) \div \Upsilon(1S)$$

- Strong suppression in PbPb
   QGP melting
- Hints of decrease then increase from 0.2→2.76→5 TeV
   (Re)combination also plays a role?
  - $\sim$ 1-1.5 $\sigma$  effect, statistical uncertainty dominant

#### More data needed to be more precise!

All the observed features can be explained in QGP melting + (Re)combination picture



 $0.2T_{c}$   $0.74T_{c}$   $1.1T_{c}$ 

 $\mathcal{E}$  (GeV/fm<sup>3</sup>)

 $2.3T_{\circ}$ 

 $\Upsilon(1S)$ 

## **Backup slides**

#### High- $p_T J/\psi$ in pPb



- Suppression at p<sub>T</sub><10 GeV/c observed by CMS</li>
- Suppression increases with event activity at forward
- Tension between ATLAS and CMS at  $p_T < 10 \text{ GeV/c}$

#### J/ψ elliptic flow





#### $\psi(2S)$ in pA at RHIC



• Indication of stronger suppression with respect to  $J/\psi$  on A-going

#### $\psi(2S)$ in pPb at LHC



- $\psi(2S)$  more suppressed than  $J/\psi$  in both forward and backward
- Comover interaction model describes reasonable well

#### $\psi(2S)$ in PbPb





#### Y in pPb



- Suppression observed on p-going for  $\Upsilon(1S)$
- More suppression for excited states