Quarkonium Experiments in Heavy-Ion Collisions Zebo Tang (唐泽波) University of Science and Technology of China (USTC) ## Quarkonium as a sensitive probe of QGP - Quarkonium production suppressed due to color-screening/melting in the QGP - Different quarkonium states provide distance scales to probe QGP (sequential suppression) Quaroknium production enhanced due to (re)combination during QGP evolution or hadronization #### In reality Quarkonium production modified by cold nuclear matter (CNM) effects on top of hot matter effects Quarkonium production in heavy-ion collisions are the interplay of color-screening/melting, (re)combination and CNM effects #### **Experimental solutions:** pA: CNM effects, reference #### AA: - Multiple dimensional Centrality, p_T, rapidity... Collision energy, system - Different states J/ψ , $\psi(2S)$, $\Upsilon(1S, 2S, 3S)$ ## **Experiments** | Accelerator | Detector | Mid-y | Forward | Notes | |-------------|----------|-------------------------------|--------------|----------------------------| | RHIC | PHENIX | e ⁺ e ⁻ | μ+μ- | Decommissioned | | | STAR | e+e-
μ+μ- | | | | LHC | ALICE | e ⁺ e ⁻ | μ+μ- | | | | ATLAS | $\mu^+\mu^-$ | | High p _T muon | | | CMS | $\mu^+\mu^-$ | | High p _T muon | | | LHCb | | $\mu^+\mu^-$ | pPb and peripheral
PbPb | # J/w Results #### STAR new results from $\mu^+\mu^-$ - Confirmed previously published e⁺e⁻ results - Improved precision and p_T converge #### Centrality dependence Low- p_T : SPS ~ RHIC < LHC More collision energies? High-p_T: (Re)combination less important Stronger suppression at LHC than at RHIC Higher collision energy? #### Beam energy dependence - SPS→RHIC: Gradually increase - RHIC→LHC: Significantly increase - Consistently described by transport model #### Low-p_T J/ψ in PbPb at 5 TeV - J/ψ at low- p_T at forward rapidity - Less suppression at 5 TeV than 2.76 TeV - But consistent within normalization uncertainties dominated by 2.76 TeV pp reference extrapolation #### **p**_T dependence - "Hint" of increase from 2.76 \rightarrow 5 TeV at 2<p_T<6 GeV/c - (Re)combination of flowing charm? #### High- p_T J/ ψ in PbPb at 2.76TeV - CMS final results on J/ψ in Pb+Pb at 2.76 TeV - Better precision with finer centrality bins #### High- p_T J/ ψ in PbPb at 5 TeV - Stronger suppression of high- $p_T J/\psi$ at 5 TeV than 2.76 TeV - Because of different p_T cut? #### **p**_T dependence - Flat at $5 < p_T < \sim 15$ GeV/c and then increase with p_T - Stronger suppression at higher beam energy in overlapping p_T # Very low- p_T J/ ψ in peripheral AA - Significant enhancement at very low p_T in (semi-)peripheral PbPb Collisions - A domain where re(combination) is negligible - At rest in the created medium ## Very low-p_T J/ψ at STAR - Excess observed at p_T <0.1 GeV, no obvious centrality dependence - t distribution consistent with interference, slope consistent with that of ρ in UPC # ψ(2S) Results ## High- $p_T \psi(2S)$ in pPb - Similar suppression in central collisions - Hints of less suppression in peripheral collisions #### $\psi(2S)$ in PbPb at 2.76 TeV - Relative more suppression at p_T>6.5 GeV/c - Relative enhancement at $p_T > 3 \text{ GeV/c}$ #### ψ(2S) in PbPb at 5 TeV - Centrality independent suppression - Consistent between two energies, but ~3σ difference in central collisions - Precision need to be improved ## High- $p_T \psi(2S)$ in PbPb - Significantly stronger suppression with respect to J/ψ - Same suppression for non-prompt $\psi(2S)$ and J/ψ # Y(1S, 2S, 3S) Results #### $\Upsilon(1S)$ in AA - Suppression of direct $\Upsilon(1S)$ in central collisions? - More suppression at forward rapidity than mid-rapidity (Re)combination? #### Y(1S) in PbPb at 5 TeV - Hints of stronger suppression in more forward rapidity - Hints of less suppression at higher beam energy Ratio(0-90%) = $$1.3 \pm 0.2$$ (stat.) ± 0.2 (syst.) ~1o higher than unity #### $\Upsilon(2S)$ in PbPb • Double ratio ~1σ higher at 5 TeV than at 2.76 TeV #### Y(2S+3S) in AuAu at RHIC • $\sim 1.5\sigma$ higher at 0.2 TeV than at 2.76 TeV CMS: JHEP 04 (2014) 103 #### $\Upsilon(3S)$ in PbPb - Double Ratio < 0.26 (95% CL) at 5 TeV - Double Ratio < 0.17 (95% CL) at 2.76 TeV ## **Summary (1/2)** #### J/ψ - Low-p_T: Suppression decreases from 0.2 to 5 TeV (Re)combination - High-p_T: Suppression increases from 0.2 to 5 TeV QGP melting - Very low-p_T: Enhancement due to photo-production $$\psi(2S) \div J/\psi$$ - Double ratio at high-p_T: - ~1 in pPb for promt - <1 in PbPb for prompt - ~1 in PbPb for non-prompt **QGP** melting #### **Summary (2/2)** #### $\Upsilon(1S)$ • $\Upsilon(1S)$ @LHC vs. J/ ψ @ RHIC (low- $\beta\gamma$) QGP melting + (Re)combination $$\Upsilon(2S, 3S) \div \Upsilon(1S)$$ - Strong suppression in PbPb QGP melting - Hints of decrease then increase from 0.2→2.76→5 TeV (Re)combination also plays a role? - \sim 1-1.5 σ effect, statistical uncertainty dominant #### More data needed to be more precise! All the observed features can be explained in QGP melting + (Re)combination picture $0.2T_{c}$ $0.74T_{c}$ $1.1T_{c}$ \mathcal{E} (GeV/fm³) $2.3T_{\circ}$ $\Upsilon(1S)$ ## **Backup slides** #### High- $p_T J/\psi$ in pPb - Suppression at p_T<10 GeV/c observed by CMS - Suppression increases with event activity at forward - Tension between ATLAS and CMS at $p_T < 10 \text{ GeV/c}$ #### J/ψ elliptic flow #### $\psi(2S)$ in pA at RHIC • Indication of stronger suppression with respect to J/ψ on A-going #### $\psi(2S)$ in pPb at LHC - $\psi(2S)$ more suppressed than J/ψ in both forward and backward - Comover interaction model describes reasonable well #### $\psi(2S)$ in PbPb #### Y in pPb - Suppression observed on p-going for $\Upsilon(1S)$ - More suppression for excited states