Measurement of J/ψ production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR experiment

Xinjie Huang (Tsinghua University) on behalf of the STAR Collaboration
The STAR detector

- **TPC**: measure momentum and energy loss.
- **TOF**: measure time-of-flight.
- **MTD (|η|<0.5)**: identify and trigger on muons:
 - fully installed in 2014 behind magnet
 - Precise timing measurement (σ~100 ps)
 - Hit position measurement (σ~1 cm)

- Muon identification: based on energy loss measured by TPC and the position/time differences between MTD measurements and TPC track projection.
J/ψ yield and v_2

- ~25000 J/ψ from Run14 MTD triggered data

- J/ψ invariant yield vs. p_T:
 - consistent with the published di-electron channel results.
 - well described by Tsallis Blast-Wave (TBW) function assuming zero J/ψ velocity.

- J/ψ v_2:
 - consistent with zero within uncertainties for $p_T > 2\text{GeV/c}$, favoring small contribution from regeneration of thermalized charm quarks.

References:

TBW: Z. Tang et al., PRC 79,051901(2009)
Strong suppression at low p_T: dissociation and CNM effects.

Strong suppression at high p_T in central collisions: a clear signal of dissociation.

Rising R_{AA} with p_T in 20 - 60% centrality: formation time effects and B-hadron feed-down.

Less suppression at LHC at low p_T in central collisions: larger regeneration contribution due to higher charm quark production cross-section.

Stronger suppression at LHC at high p_T in central collisions: larger dissociation rate due to higher medium temperature.

J/ψ R_{AA} can be qualitatively described by both transport models including dissociation and regeneration effects. However, there is tension at high p_T.

2016/9/27

Xinjie Huang, Hard Probe 2016, Wuhan