

Measurement of J/ψ production in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ by the STAR experiment

Xinjie Huang (Tsinghua University) on behalf of the STAR Collaboration

8th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

September 23–27, 2016 Wuhan, China

The STAR detector

- **TPC**: measure momentum and energy loss.
 - **TOF**: measure time-of-flight.
 - MTD (|η|<0.5) : identify and trigger on muons:
 - fully installed in 2014
 behind magnet
 - Precise timing
 measurement (σ~100 ps)
 Hit position
 - measurement(σ~1 cm)

Mid-rapidity detector: $|\eta| < 1$, $0 < \varphi < 2\pi$

Muon identification: based on energy loss measured by TPC and the position/time differences between MTD measurements and TPC track projection.

Xinjie Huang, Hard Probe 2016, Wuhan

J/ψ yield and v₂

Di-electron: STAR PRL 111 (2013) 052301 PLB 722 (2013) 55, PRC 90, 024906 (2014) TBW: Z. Tang et al., PRC 79,051901(2009)

~25000 J/ψ from Run14 MTD triggered data J/ψ invariant yield vs. pt :

 – consistent with the published di-electron channel results.

– well described by Tsallis Blast-Wave (TBW) function assuming zero J/ψ velocity.

- consistent with zero within uncertainties for $p_T > 2GeV/c$, favoring small contribution from regeneration of thermalized charm quarks.

J/ψ R_{AA} vs. p_T

Di-electron: STAR PLB 722 (2013) 55, PRC 90, 024906 (2014)

- Strong suppression at low p_T: dissociation and CNM effects.
- Strong suppression at high p_T in central collisions: a clear signal of dissociation.
- Rising R_{AA} with p_T in 20 60% centrality: formation time effects and Bhadron feed-down.

2016/9/27

Xinjie Huang, Hard Probe 2016, Wuhan

J/ψ R_{AA} vs. N_{part}

PHENIX: PRL 98 (2007) 232301 ALICE: PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063 THU Model: Y. Liu, et al., PLB 678 (2009) 72
K. Zhou, et al., PRC 89 (2014) 054911
TAMU Model: X. Zhao, et al., PRC 82 (2010) 064905
X. Zhao, et al., NPA 859 (2011) 114

Less suppression at LHC at low p_T in central collisions: larger regeneration contribution due to higher charm quark production cross-section.

- Stronger suppression at LHC at high p_T in central collisions: larger dissociation rate due to higher medium temperature.
- $J/\psi R_{AA}$ can be qualitatively described by both transport models including dissociation and regeneration effects. However, there is tension at high p_T .