Extracting \hat{q} from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Carlota Andrés

Universidade de Santiago de Compostela

Hard Probes 2016, Wuhan, China

N. Armesto, Carlos A. Salgado, Matthew Luzum and Pia Zurita

Introduction

- Study of suppression of high-p_T particles in **PbPb** collisions at the LHC and **AuAu** collisions at RHIC.
- Analysis based on the quenching weights (**QW**) for medium-induced gluon radiation.
- **QW** computed in multiple soft scattering approximation.
- Embedded in **different hydrodynamical** descriptions of the medium.
- Study done for **different centrality classes**.
- **First study** of centrality and energy dependence of R_{AA}.
The single inclusive cross section is described by

$$\frac{d\sigma^{AA\rightarrow h+X}}{dp_T dy} = \int \frac{dx_2}{x_2} \frac{dz}{z} \sum_{i,j} x_1 f_i/A(x_1, Q^2) x_2 f_j/A(x_2, Q^2)$$

$$\times \frac{d\hat{\sigma}^{ij\rightarrow k}}{d\hat{t}} D_{k\rightarrow h}(z, \mu_F^2)$$

Factorization scale $Q^2 = (p_T/z)^2$. Fragmentation scale as $\mu_F = p_T$.

- CTEQ6M + EPS09 (NLO).
- We absorb **energy loss** in a redefinition of the fragmentation functions:

$$D_{k\rightarrow h}^{(med)}(z, \mu_F^2) = \int_0^1 d\epsilon P_E(\epsilon) \frac{1}{1 - \epsilon} D_{k\rightarrow h}^{(vac)} \left(\frac{z}{1 - \epsilon}, \mu_F^2 \right)$$

- $P_E(\epsilon)$ is the **Quenching Weight** and $D_{k\rightarrow h}^{(vac)}(z, \mu_F^2)$, DSS fragmentation functions.
Quenching Weights

- The ASW **Quenching Weights** are given by

\[
P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dI^{(med)}(\omega_i)}{d\omega} \right]
\times \delta \left(\Delta E - \sum_{i=1}^{n} \omega_i \right) \exp \left[- \int_{0}^{\infty} d\omega \frac{dI^{(med)}}{d\omega} \right]
\]

- **Independent** gluon emission assumed.
- QW are Poisson distributions.
- Support in recent works of **coherence** and **resummation** by J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk...
In \(\frac{dI^{(med)}}{d\omega} \) the medium properties appear in: \(\sigma(r)n(\xi) \).

In the multiple soft scattering approximation we use

\[
\sigma(r)n(\xi) \approx \frac{1}{2} \hat{q}(\xi)r^2
\]

Perturbative tails neglected.

We specify the relation between \(\hat{q}(\xi) \) and the medium properties given by our hydrodynamic model as

\[
\hat{q}(\xi) = K \hat{q}_{QGP}(\xi) \approx K \cdot 2\epsilon^{3/4}(\xi)
\]

\(K \) is our **fitting parameter**.

Energy density obtained by solving the relativistic hydrodynamic equations.
Hydrodynamical medium modelling

- We use several hydrodynamic simulations:
 - “Hirano”: no viscous, optical Glauber model, \(\tau_0 = 0.6 \text{ fm} \).
 - “Glauber”: viscous \(\eta/s=0.08 \), energy density proportional to \(\rho_{\text{bin}} \) as initial condition, \(\tau_0 = 1 \text{ fm} \).
 - “fKLN”: viscous \(\eta/s=0.16 \), factorised Kharzeev-Levin-Nardi model, \(\tau_0 = 1 \text{ fm} \).

- Uncertainty coming from the hydrodynamic background is negligible with respect to our conclusions.

- Ambiguity before thermalization. 3 extrapolations:
 - Case i): \(\hat{q}(\xi) = 0 \) for \(\xi < \tau_0 \).
 - Case ii): \(\hat{q}(\xi) = \hat{q}(\tau_0) \) for \(\xi < \tau_0 \).
 - Case iii): \(\hat{q}(\xi) = \hat{q}(\tau_0)/\xi^{3/4} \) for \(\xi < \tau_0 \).
Nuclear modification factor

- We use R_{AA} experimental data:
 \[
 R_{AA} = \frac{dN_{AA}/d^2p_T dy}{\langle N_{coll}\rangle dN_{pp}/dp_T^2 dy}
 \]

- From Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and Au-Au at $\sqrt{s_{NN}} = 200$ GeV.

- ALICE data on R_{AA} for charged particles with $p_T > 5$ GeV in different centrality classes and for $|\eta| < 0.8$, arXiv:1208.2711 [hep-ex].

- PHENIX data on π_0 R_{AA} $p_T > 5$ GeV, arXiv:0801.4020 [nucl-ex].
R_{AA} at $\sqrt{s_{NN}} = 200$ GeV for different centralities
R_{AA} at $\sqrt{s_{NN}}=2.76$ TeV for different centralities

χ^2 to the best value of K. $\Delta\chi^2 = 1$.
K-factor vs. impact parameter

Energy density constant before thermalization.

Free-streaming case.

K depends mainly on the energy and it is almost independent of the centrality of the collision!!
K-factor vs. $\epsilon \tau_0$ for \hat{q} constant before thermalization

Difficult to reconcile the energy and centrality dependence!! A new puzzle??
R_{AA} predictions for $\sqrt{s_{NN}} = 5.02$ TeV

Using $K_{5.02} = K_{2.76}$

If $R_{AA}^{2.76} = R_{AA}^{5.02} \Rightarrow K_{5.02} \sim 0.85 K_{2.76}$
Limitations

- The definition of \hat{q} neglects the **perturbative tails** of the distributions.
- The QW find support in the **coherence** analysis of the medium: if coherence is broken they could fail.
- Finite energy corrections.
- \hat{q} energy or length independent.
- **Collisional energy loss** is neglected.
Conclusions

- We fit the single-inclusive experimental data at RHIC and LHC for different centralities.
- The fitted value at RHIC confirms large corrections to the ideal case.
- For the case of the LHC, the extracted value of K is close to unity.
- K-factor is $\sim 2 - 3$ times larger for RHIC than at the LHC.
- Centrality dependences at RHIC and the LHC are rather flat.
- The change in the value of K does not look to be simply due to the different local medium parameters.
- Unexpected result!!
Next steps...

- Using EKRT event-by-event hydro ($\tau_0 = 0.197$)

- $K = 1.071 \pm 0.046$ for 20-30% Pb-Pb collisions.

Same result as for the other hydro simulations.
Other observables

- Using the fitted value of K.
- v_n defined as in Jacquelyn Noronha-Hostler et al., arXiv:1602.03788

Carlota Andrés, Néstor Armesto, Harri Niemi, Risto Paatelainen, Carlos A. Salgado and Pia Zurita.
Backup
The inclusive energy distribution of gluon radiation off an in-medium produced parton is given by

\[
\omega \frac{dI^{(med)}}{d\omega} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2\text{Re} \int_{\xi_0}^{\infty} d\gamma I \int_{\gamma I}^{\infty} d\bar{\gamma} I \int d\mathbf{u} \int_{\bar{\gamma} I}^{\infty} d\mathbf{k}_{\perp}
\]

\[
\times e^{-i\mathbf{k}_{\perp} \cdot \mathbf{u}} e^{-\frac{1}{2} \int_{\bar{\gamma} I}^{\infty} d\xi n(\xi) \sigma(\mathbf{u}) \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{u}} \int_{y=0}^{\mathbf{u}=\mathbf{r}(\bar{\gamma} I)} D\mathbf{r} \]

\[
\times \exp \left[i \int_{\gamma I}^{\bar{\gamma} I} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^2 - \frac{n(\xi) \sigma(\mathbf{r})}{i\omega} \right) \right]
\]

- \(n(\xi) \), density of scattering centers.
- \(\sigma(\mathbf{r}) \), strength of a single elastic scattering.
The production weight is given by

$$\omega(x_0, y_0) = T_{Pb}(x_0, y_0) T_{Pb}(\vec{b} - (x_0, y_0))$$

The average values of an observable and in particular of our fragmentations functions is computed as

$$\langle O \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0) O(x_0, y_0, \phi)$$

for

$$\langle D_{k \rightarrow h}^{med}(z, \mu_F^2) \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0)$$

$$\times \int d\zeta P(x_0, y_0, \phi, \zeta) \frac{1}{1 - \zeta} D_{k \rightarrow h}^{(vac)} \left(\frac{z}{1 - \zeta}, \mu_F^2 \right)$$

where $N = 2\pi \int dx_0 dy_0 \omega(x_0, y_0)$.
Nuclear modification factors R_{AA} for single-inclusive and I_{AA} for hadron-triggered fragmentation functions for different values of $2K = K'/0.73$, with $K' = 0.5, 1, 2, 3, ..., 20$. The green line in the curve corresponding to the minimum of the common fit to R_{AA} and I_{AA} data: $K = 4.1$.

RHIC results
Left: χ^2-values for different values of K for light hadrons and for the three different extrapolations for $\xi < \tau_0$. Red lines correspond to single-inclusive π_0 data from PHENIX (R_{AA}) and black ones to the double-inclusive measurements by STAR (I_{AA}).

Right: the corresponding central values (minima of the χ^2) and the uncertainties computed by considering $\Delta \chi^2 = 1$.
FIG. 3. Scaled transverse momentum distribution of negative pions and anti-protons in Au+Au 130 A GeV central and semi-central collisions. Solid lines and dashed lines correspond to initial conditions A and B, respectively. Experimental data are observed by the PHENIX Collaboration.
ν_2 for charged pions

Tetsufumi Hirano and Keiichi Tsuda, arXiv:nucl-th/0205043

FIG. 12: $\nu_2(p_t)$ for charged pions. The solid, dotted, and dashed lines correspond to total pions, pions directly emitted from freeze-out hypersurface, and pions from resonance decays. Data from Ref. [56].
Multiplicty at RHIC

FIG. 7: (Color online) Centrality dependence of total multiplicity dN/dY and $<p_T>$ for $\pi^+, \pi^-, K^+, K^-, p$ and \bar{p} from PHENIX [84] for Au+Au collisions at $\sqrt{s} = 200$ GeV, compared to the viscous hydrodynamic model and various η/s, for Glauber initial conditions and CGC initial conditions. The model parameters used here are $\tau_0 = 1$ fm/c, $\tau_H = 6\eta/s$, $\lambda_1 = 0$, $T_f = 140$ MeV and adjusted T_i (see Table I).
v_2 at RHIC

FIG. 2: (Color online) Anisotropy (3) prediction for $\sqrt{s} = 5.5$ TeV Pb+Pb collisions (LHC), as a function of centrality. Prediction is based on values of η/s for the Glauber/CGC model that matched $\sqrt{s} = 200$ GeV Au+Au collision data from PHOBOS at RHIC ([31], shown for comparison). The shaded band corresponds to the estimated uncertainty in our prediction from additional systematic effects: using $e_p/2$ rather than v_2 (5%) [1]; using a lattice EoS from [29] rather than [27] (5%); not including hadronic cascade afterburner (5%) [38].
In the case of 'Hirano’s ideal hydro’, the values of the temperature at \(\tau=0.6 \) fm and \(x=y=\eta=0 \) for RHIC and LHC are:

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>RHIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-05%</td>
<td>484.3 MeV</td>
<td>373.2 MeV</td>
</tr>
<tr>
<td>05-10%</td>
<td>476.6 MeV</td>
<td>369.6 MeV</td>
</tr>
<tr>
<td>10-20%</td>
<td>463.6 MeV</td>
<td>356.8 MeV</td>
</tr>
<tr>
<td>20-30%</td>
<td>444.6 MeV</td>
<td>341.1 MeV</td>
</tr>
<tr>
<td>30-40%</td>
<td>421.5 MeV</td>
<td>323.7 MeV</td>
</tr>
<tr>
<td>40-50%</td>
<td>393.6 MeV</td>
<td></td>
</tr>
<tr>
<td>50-60%</td>
<td>359.6 MeV</td>
<td></td>
</tr>
</tbody>
</table>
Initial temperatures for Matt’s hydros

‘Matt’s viscous hydro for two different initial conditions and η/s’. Initial temperatures at $x=y=0$, $\tau=1$ fm:

Glauber:
- $b=2$ fm LHC: 418 MeV
- $b=12$ fm LHC: 272 MeV
- $b=2$ fm RHIC: 331 MeV

fKLN:
- $b=2$ fm LHC: 389 MeV
- $b=12$ fm LHC: 296 MeV
- $b=2$ fm RHIC: 299 MeV
\(\hat{q} \sim T^3 \sim \epsilon^{3/4} \) both for hadronic and partonic phase.

Figure 3. Transport coefficient as a function of energy density for different media: cold, massless hot pion gas (dotted) and (ideal) QGP (solid curve).
K versus initial temperature

$\hat{q}(\tau) = \hat{q}(\tau_0), \; \tau < \tau_0$

Hirano RHIC
fKLN RHIC
Glauber RHIC
Hirano LHC
fKLN LHC
Glauber LHC
K versus initial energy

$\hat{q}(\tau) = \hat{q}(\tau_0), \tau < \tau_0$

- Hirano RHIC
- fKLN RHIC
- Glauber RHIC
- Hirano LHC
- fKLN LHC
- Glauber LHC

$K = \frac{\hat{q}}{2\epsilon^{3/4}}$

ϵ_0 (GeV/fm3)

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0

10 20 30 40 50 60 70 80 90 100 110

ϵ_0 (GeV/fm3)