Jet mass measurements in Pb-Pb and p-Pb collisions

Hard Probes 2016

Chiara Bianchin for the ALICE Collaboration

- Hard partons lose energy travelling through the medium
 - Outside → the energy is "lost", pp-like jets
 - Gluon radiation inside the jet cone → jet broadening

- Jet yield suppressed ($R_{AA} < 1$) as much as charged hadrons
 - → Large fraction of energy lost out-of-cone
- Jet shapes describe the internal structure of jets
 - \rightarrow e.g. p_TD suggests more collimated jets than PYTHIA

Virtuality evolution

- In hard scattering processes the leading parton (LP) is usually produced off-shell, its off-shellness is the virtuality ~ jet mass
 - In vacuum, parton virtuality decreases at each emission
 - In a medium, parton virtuality can rise due to scatterings

Jet mass and virtuality

$$M = \sqrt{p^2 - p_T^2 - p_z^2}$$
 $p = \sum_{i=1}^n p_{T_i} \cosh \eta_i$ $p_z = \sum_{i=1}^n p_{T_i} \sinh \eta_i$

- Jet mass increases with the radial distance of the constituents from the jet axis
 - Soft constituents, away from the jet axis within the cone → larger mass
 - Few hard constituents → smaller mass
 - → E.g. gluon vs quark jets jet mass difference

Model expectations

- Quenching models (JEWEL, Q-PYTHIA) show a larger mass than pp-like PYTHIA jets
 - JEWEL: 2 → 2 pQCD matrix elements with parton shower taking into account radiation
 - Q-PYTHIA: PYTHIA with medium effects in the final state branching through an additive term in the splitting functions computed in the multiple-soft scattering approximation
- JEWEL with "recoil off" (removing recoil centres before hadronization) shows a depletion of the jet mass wrt pp due to less low- $p_{\scriptscriptstyle T}$ fragments wrt recoil on
- Pb-Pb measurement can discriminate among these predictions

JEWEL arXiv:1311.0048, arXiv:1212.1599, private communication Q-PYTHIA Eur.Phys.J.C63:679-690,2009

Jet mass analysis strategy in ALICE

Data samples and analysis strategy

- Pb-Pb analysis performed on 2011 ($\sqrt{s_{NN}}$ = 2.76 TeV) min bias sample with centrality trigger, 0-10% central
- Event-by-event background subtracted with derivative and constituent methods

JHEP 0804(2008) 005 Phys. Lett. B659 (2008) 119

- p-Pb analysis performed on 2013 (√s_{NN} = 5.02 TeV) min bias and Emcal jet triggered samples
- Mass sensitive to background even in p-Pb, see later
- Charged jets, anti- k_T , E-scheme, R = 0.4, pion mass

M. Cacciari, G. P. Salam and G. Soyez, arXiv:1111.6097

2D unfolding technique used to correct to particle level

RooUnfold, CERN-2011-006, pp. 313-318.

Response matrix and embedding

- The response matrix for unfolding is defined embedding PYTHIA events at detector level into data events
- Event-by-event background subtraction with derivative method

- Event multiplicity is small, a PYTHIA event would bias it
 - Embed one track/event
- The response matrix for unfolding is defined embedding 4-vectors corresponding to detector PYTHIA jets into data events
- Background is accounted for in the response (no event-byevent subtraction)

Systematics p-Pb

- Sources
 - Detector effects (tracking efficiency uncertainty)
 - Unfolding (e.g. number of iterations)
 - Background correction (syst variation e-by-e subtraction only)
- Main contributions: background and tracking efficiency uncertainty

Systematics Pb-Pb

- Sources
 - Detector effects (tracking efficiency uncertainty)
 - Unfolding (e.g. number of iterations, priors)
 - Background correction (derivative vs constituent)
- Main contributions: background and tracking efficiency uncertainty, and priors

Results and comparison with models

 p-Pb jet mass overall well described by PYTHIA with some tension in the tails

Pb-Pb results

Pb-Pb results

Jet mass in Pb-Pb collisions compared to PYTHIA

24th Sept 2016

C. Bianchin - Jet mass p-Pb and Pb-Pb in ALICE

Comparison Pb-Pb and p-Pb results

- Jet mass in Pb-Pb collisions compared to p-Pb
- In order to directly compare Pb-Pb and p-Pb we have to consider the "trivial" √s dependence of quark/gluon jets in a given p_T bin
 - We compare the ratio of data with the ratio of PYTHIA at the two energies

$$\mathfrak{R}_{\sqrt{s}} = \frac{\frac{1}{N_{\text{jets}}} \frac{dN}{dM_{\text{chjet}}} |_{\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}}}{\frac{1}{N_{\text{jets}}} \frac{dN}{dM_{\text{chjet}}} |_{\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}}}$$

Ratio Pb-Pb/p-Pb

$$\Re_{\sqrt{s}} = \frac{\frac{1}{N_{\rm jets}} \frac{dN}{dM_{\rm chjet}}|_{\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}}}{\frac{1}{N_{\rm jets}} \frac{dN}{dM_{\rm chjet}}|_{\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}}}$$

Slope of ratio indicates that Pb-Pb distribution is shifted towards smaller masses wrt p-Pb

 Large uncertainties, propagated as uncorrelated → need further studies to determine possible correlations between the two data sets

Comparison with models

- Data lay in between PYTHIA and JEWEL "recoil off"
- Models with quenching produce too large mass

Conclusions

- First jet mass measurement in heavy-ion collisions → first attempt to access the virtuality evolution of parton shower
 - Mass distribution in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV and p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
- p-Pb data are well reproduced by PYTHIA and used as reference for Pb-Pb
- Pb-Pb/p-Pb jet mass ratio indicates a shift towards smaller masses of Pb-Pb wrt p-Pb
- Models implementing quenching are not able to reproduce the data, which show in-between no effect and little depletion
 - Measurement access energy and virtuality loss in models and can constrain models
 - Effort ongoing to reduce the uncertainties on the ratio

Hard Probes 2016

8th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

September 23–27, 2016 Wuhan, China

Extra slides

Jet mass dependence on constituent mass

- Relatively small dependence on the constituent mass
 - Assumed pion mass for all constituents

Background subtraction for jet-shape observables

 Background density determined using k_T clusters

$$\begin{split} \rho &= \mathrm{median} \left\{ \frac{p_{\mathrm{T},i}}{A_i} \right\} \\ \rho_{\mathrm{m}} &= \mathrm{median} \left\{ \frac{m_{\delta,i}}{A_i} \right\} \quad m_{\delta,k_{\mathrm{T}}^{\mathrm{cluster}}} = \sum_{i} (\sqrt{m_{\mathrm{j}}^2 + p_{\mathrm{T,j}}^2} - p_{\mathrm{T,j}}) \end{split}$$

- ρ and ρ_m have only a small dependence on y and ϕ
- "Ghosts" (very lowmomentum particles) are added uniformly in y-φ

Derivative subtraction

- Function describing the jet shape V({p_{iet}})
- Calculate its derivative at ρ = 0 and $\rho_{\rm m}$ = 0

G. Soyez et al. Phys.Rev.Lett. 110 no. 16, (2013) 162001

Constituent subtraction

Derivative subtraction

Constituent subtraction

- Two effects: Event-by-event background estimate + remaining fluctuations
- Derivative method over subtracts the background event by event
- Issues in sparse events:
 - Possible anti correlation between average background and fluctuations
 - The effect might not be captured by embedding
- We do not subtract the background eventby-event and treat both effects as fluctuations included in the response

Background subtraction for jet-shape observables

 Background density determined using k_T clusters

$$\rho = \operatorname{median}\left\{\frac{p_{\mathrm{T},i}}{A_i}\right\}$$

$$\rho_{\rm m} = {\rm median} \left\{ \frac{m_{\delta,i}}{A_i} \right\} \quad m_{\delta,k_{\rm T}^{\rm cluster}} = \sum_{j} (\sqrt{m_{\rm j}^2 + p_{\rm T,j}^2} - p_{\rm T,j})$$

- ρ and ρ_m have only a small dependence on y and ϕ
- "Ghosts" (very lowmomentum particles) are added uniformly in y-φ

Area based/derivative method:

- Define the jet shape's sensitivity V({p_{iet}})
- Take the derivative and calculate it at zero background

G. Soyez et al. Phys.Rev.Lett. 110 no. 16, (2013) 162001

Constituent subtraction

- Particle level subtraction
- Pairs of particle-ghost are considered
- p_T and m are adjusted for the largest between $p_{T,g} = A_g \rho$ and $p_{T,p}$
- Do the same with mass and recluster