Transport coefficients from energy loss studies in an expanding QGP

Alejandro Ayala, Isabel Domínguez, Jamal Jalilian-Marian, María Elena Tejeda-Yeomans

Based on Phys. Rev. C 94, 024913 (2016) (arXiv:1603.09296)

- Goal: Find a relation between \hat{q} and η / s
- Goal: Find a relation between \hat{q} and η / s
- Tool: Rely on linear viscous hydro to describe deposit of energy-momentum within medium
- Goal: Find a relation between \hat{q} and η / s
- Tool: Rely on linear viscous hydro to describe deposit of energy-momentum within medium
- Treat the medium as expanding: Important to follow fast parton path from where it was produced
- Goal: Find a relation between \hat{q} and η / s
- Tool: Rely on linear viscous hydro to describe deposit of energy-momentum within medium
- Treat the medium as expanding: Important to follow fast parton path from where it was produced
- Characterize events in terms of an observable: Energy loss that can be quantified in terms of missing p_{t}
- Goal: Find a relation between \hat{q} and η / s
- Tool: Rely on linear viscous hydro to describe deposit of energy-momentum within medium
- Treat the medium as expanding: Important to follow fast parton path from where it was produced
- Characterize events in terms of an observable: Energy loss that can be quantified in terms of missing p_{t}
- Message is that medium cannot be described with a single value of η / s nor of \hat{q} but values for these coefficients can be obtained for events classified in terms of a given ΔE

Fast parton moving in medium

$$
J^{\nu}(x)=\left\langle\frac{d E}{d x}\right\rangle \delta(\mathbf{x}-\mathbf{v} t) v^{\nu}
$$

- $\mathbf{v}^{\nu} \equiv(1, \mathbf{v}), \mathbf{v}$ is the corresponding parton velocity
- $\left\langle\frac{d E}{d x}\right\rangle$ is the average energy-loss per unit length
R. B. Neufeld, T. Renk. Phys. Rev. C. 82. 044903 (2010).

Energy-momentum deposited described by linear, small viscosity hydro
Medium's total energy-momentum $T^{\mu \nu}$ form initial $T_{0}^{\mu \nu}$ perturbed by fast parton

$$
T^{\mu \nu}=T_{0}^{\mu \nu}+\delta T^{\mu \nu}
$$

Small deviations from equilibrium hydro equations

$$
\begin{aligned}
\partial_{\mu} T_{0}^{\mu \nu} & =0 \\
\partial_{\mu} \delta T^{\mu \nu} & =J^{\nu}
\end{aligned}
$$

Express tensor components in terms of energy density $\delta \epsilon$ and momentum density \mathbf{g} transferred by fast parton to the medium

$$
\begin{aligned}
\delta T_{0}^{00} & \equiv \delta \epsilon \\
\delta T^{0 i} & \equiv g^{i} \\
\delta T^{i j} & \equiv c_{s}^{2} \delta \epsilon \delta^{i j}-\frac{3}{4} \Gamma_{s}\left(\partial^{i} g^{j}+\partial^{j} g^{i}-\frac{2}{3} \nabla \cdot \mathbf{g} \delta^{i j}\right) \\
\Gamma_{s} & \equiv \frac{4 \eta}{3 \epsilon_{0}\left(1+c_{s}^{2}\right)}=4 \eta / 3 s T \text { sound attenuation length }
\end{aligned}
$$

Initial medium's energy density and temperature: ϵ_{0}, T_{0}

Equations more easily solved in Fourier space

$$
\begin{aligned}
\delta \epsilon(\omega, k) & =\frac{i k \mathbf{J}_{L}+\mathbf{J}^{0}\left(i \omega-\Gamma_{s} k^{2}\right)}{\omega^{2}-c_{s}^{2} k^{2}+i \Gamma_{s} \omega k^{2}} \\
\mathbf{g}_{L}(\omega, k) & =\frac{i \omega \mathbf{J}_{L}+i c_{s}^{2} \hat{\mathbf{k}} J^{0}}{\omega^{2}-c_{s}^{2} k^{2}+i \Gamma_{s} \omega k^{2}} \\
\mathbf{g}_{T}(\omega, k) & =\frac{i \mathbf{J}_{T}}{\omega+\frac{3}{4} i \Gamma_{s} k^{2}} \\
\mathbf{J}_{L} & \equiv(\mathbf{J} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}} \\
\mathbf{J}_{T} & \equiv \mathbf{J}-\mathbf{J}_{L}
\end{aligned}
$$

Solutions in coordinate space $\left[\alpha=|z-v t| /\left(\frac{3 \Gamma_{s}}{2 v}\right), \beta=x_{T} /\left(\frac{3 \Gamma_{s}}{2 v}\right)\right]$
A. A., I. Dominguez, M. E. Tejeda-Yeomans, Phys. Rev. C 88, 025203 (2013).

$$
\begin{aligned}
& \text { Particle momentum distribution (Cooper-Frye) } \\
& E \frac{d N}{d^{3} p}=\frac{1}{(2 \pi)^{3}} \int d \Sigma_{\mu} p^{\mu}\left[f(p \cdot u)-f\left(p_{0}\right)\right]
\end{aligned}
$$

Constant time freeze-out hyper surface: $d \Sigma_{\mu} p^{\mu}=E d^{3} r$.
Equilibrium distribution (Boltzmann): $f_{0}=e^{-p_{T} / T_{0}}$.
Distribution generated by deposited energy-momentum:

$$
\begin{aligned}
& f\left(x_{\perp}, p_{\perp}\right)-f_{0} \simeq\left(\frac{p_{T}}{T_{0} \epsilon_{0}}\right)\left(\frac{\delta \epsilon}{\epsilon_{0}}+\frac{g_{y}\left(x_{\perp}\right) \sin \phi+g_{z}\left(x_{\perp}\right) \cos \phi}{\epsilon_{0}\left(1+c_{s}^{2}\right)}\right) e^{-p_{T} / T_{0}} \\
& \text { Angle between } \mathbf{g} \text { and } \hat{\mathbf{z}}: \phi
\end{aligned}
$$

Particle distribution around parton direction of motion depends on the relative strength of g_{y} (the coefficient of $\sin \phi$) and g_{z} (the coefficient of $\cos \phi$)

$$
\begin{aligned}
\delta \epsilon & =\left(\frac{1}{4 \pi}\right)\left(\frac{d E}{d x}\right)\left(\frac{2 v}{3 \Gamma_{s}}\right)^{2}\left(\frac{9}{8 v}\right) I_{\delta \epsilon}(\alpha, \beta) \\
\mathbf{g}_{i} & =\left(\frac{1}{4 \pi}\right)\left(\frac{d E}{d x}\right)\left(\frac{2 v}{3 \Gamma_{s}}\right)^{2} I_{g_{i}}(\alpha, \beta)
\end{aligned}
$$

Probability density to produce particles around fast parton's direction of motion

Use Cooper-Frye distribution and divide by total number of particles N

$$
\mathcal{P}\left(p_{T}, r, \phi\right)=\frac{1}{N} \frac{d N}{p_{T} d p_{T} d^{2} r}
$$

The average momentum squared carried by the disturbance, transverse to the direction of the fast parton is

$$
\left\langle q^{2}\right\rangle \equiv 2 \int d^{2} r \int d p_{T} p_{T} \int_{\text {Explicitly }}^{\pi / 2} d \phi \mathcal{P}\left(p_{T}, r, \phi\right) p_{T}^{2} \sin ^{2} \phi
$$

$$
\left\langle q^{2}\right\rangle=20 T_{0}^{2} \frac{\int d^{2} r\left[\frac{\pi}{8} \delta \epsilon+\frac{(4 / 3) \mathbf{g}_{y}+(2 / 3) \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right]}{\int d^{2} r\left[\frac{\pi}{4} \delta \epsilon+\frac{2 \mathbf{g}_{y}+2 \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right]}
$$

- Can $\left\langle q^{2}\right\rangle$ be identified with the average momentum squared given to the fast parton by the medium and therefore with \hat{q} upon dividing by the medium's length L ?
- The calculation refers to the average momentum squared given to the medium by the fast parton.
- If the parton's change in energy is small the main effect on the fast parton is a deflection of its original trajectory.
- As a result of energy and momentum conservation during this deflection, the momentum put into the medium should compensate the momentum given to the fast parton.
- Since in a hydrodynamical picture, the energy-momentum is described in terms of $\delta \epsilon$ and \mathbf{g}, we can write for the parameter \hat{q}

$$
\hat{q}=\left\langle q^{2}\right\rangle / L
$$

$\hat{q}:$ Static vs expanding medium

$$
\hat{q}=20 \frac{T_{0}^{2}}{L} \frac{\int d^{2} r\left[\frac{\pi}{8} \delta \epsilon+\frac{(4 / 3) \mathbf{g}_{y}+(2 / 3) \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right]}{\int d^{2} r\left[\frac{\pi}{4} \delta \epsilon+\frac{2 \mathbf{g}_{y}+2 \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right]}
$$

- For the static case, the expression for \hat{q} is essentially independent of η / s.
- What happens if the medium is expanding?
- Classify events according to energy loss ΔE and in-medium travelled length $L(\mathbf{r}, \hat{\mathbf{n}})$, where \mathbf{r} and $\hat{\mathbf{n}}$ are the location of hard scattering and direction of propagation of fast parton.

$$
\hat{q}_{\Delta E}=\frac{20 T_{0}^{2} \int d^{2} r\left(\frac{\pi}{8} \delta \epsilon+\frac{(4 / 3) \mathbf{g}_{y}+(2 / 3) \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right)_{\Delta E}}{\sum_{\Delta E} L(\mathbf{r}, \hat{\mathbf{n}}) \int d^{2} r\left(\frac{\pi}{4} \delta \epsilon+\frac{2 \mathbf{g}_{y}+2 \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right)_{\Delta E}} .
$$

Longitudinally expanding medium

$$
L(\mathbf{r}, \hat{\mathbf{n}})=\frac{1}{2}\left(\sqrt{R_{A}^{2}-r^{2} \sin \varphi}-r \cos \varphi\right)
$$

Take as the energy loss per unit length

$$
\left(\frac{d E}{d x}\right)=\frac{\Delta E}{L(\mathbf{r}, \hat{\mathbf{n}})}
$$

Model for longitudinally expanding medium
H. Zhang, J. F. Owens, E. Wang, and X.-N Wang, Phys. Rev. Lett. 98, 212301 (2007)

- ρ_{g} : gluon density;
ρ_{0} : central gluon density;
τ_{0} : formation time; λ_{0} : mean free path
medium's influence time

$$
\begin{array}{r}
\Delta E=\left\langle L / \lambda_{0}\right\rangle=\left\langle\frac{d E}{d x}\right\rangle_{1 d} \int_{\tau_{0}}^{\infty} d \tau \frac{\tau-\tau_{0}}{\tau_{0} \rho_{0}} \rho_{g}(\tau, \mathbf{b}, \mathbf{r}+\hat{\mathbf{n}} \tau) \\
\langle n\rangle \equiv\left\langle\frac{d E}{d x}\right\rangle_{1 d} \int_{\tau_{0}}^{\infty} d \tau \frac{1}{\lambda_{0} \rho_{0}} \rho_{g}(\tau, \mathbf{b}, \mathbf{r}+\hat{\mathbf{n}} \tau) \\
\text { average number of scatterings }
\end{array}
$$

Model for longitudinally expanding medium
H. Zhang, J. F. Owens, E. Wang, and X.-N Wang, Phys. Rev. Lett. 98, 212301 (2007)

- ρ_{g} : gluon density; ρ_{0} : central gluon density; T_{A} : Thickness function; \mathbf{b} : impact parameter; R_{A} : nuclear radius; λ_{0} : mean free path.

$$
\begin{aligned}
\rho_{g}(\tau, \mathbf{b}, \mathbf{r}, \hat{\mathbf{n}}) & =\frac{\tau_{0} \rho_{0}}{\tau} \frac{\pi R_{A}^{2}}{2 A}\left[T_{A}(|\mathbf{r}+\hat{\mathbf{n}} \tau|)+T_{A}(|\mathbf{b}-\mathbf{r}-\hat{\mathbf{n}} \tau|)\right] \\
\left\langle\frac{d E}{d x}\right\rangle_{1 d} & =\epsilon_{0}\left[\frac{E}{\mu_{0}}-1.6\right]^{1.2}\left[7.5+\frac{E}{\mu_{0}}\right]^{-1}
\end{aligned}
$$

- $\mu_{0}=1.5 \mathrm{GeV} ; \epsilon_{0}=2 \mathrm{GeV} / \mathrm{fm}$, tuned to descirbe $R_{A A}$ at LHC

Medium's influence time and average number of scatterings, central collisions

A. A., J. Jalilian-Marian, A. Ortiz, G. Paic, J. Magnin, M. E. Tejeda-Yeomans, Phys. Rev. C 84, 024915 (2011)

medium's influence time

average number of scatterings

Relating η / s and \hat{q}

$$
\hat{q}_{\Delta E}=\frac{20 T_{0}^{2} \int d^{2} r\left(\frac{\pi}{8} \delta \epsilon+\frac{(4 / 3) \mathbf{g}_{y}+(2 / 3) \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right)_{\Delta E}}{\sum_{\Delta E} L(\mathbf{r}, \hat{\mathbf{n}}) \int d^{2} r\left(\frac{\pi}{4} \delta \epsilon+\frac{2 \mathbf{g}_{y}+2 \mathbf{g}_{z}}{\left(1+c_{s}^{2}\right)}\right)_{\Delta E}}
$$

$$
\frac{\eta}{s} \sim \frac{\text { mean free path }}{\text { thermal wavelength }}=T \frac{L(\mathbf{r}, \hat{\mathbf{n}})}{\langle n\rangle}
$$

Use MadGraph 5 to generate parton events at random positions \mathbf{r}, moving in random directions $\hat{\mathbf{n}}$

η / s vs ΔE (trigger particle)

η / s vs r (trigger particle)

\hat{q} vs η / s (trigger particle)

SUMMARY AND CONCLUSIONS

- A non-trivial behavior of the transport coefficients \hat{q} and η / s with the the location of the hard scattering and with the energy loss characterizing the events is obtained for an expanding medium.
- Model the amount of energy and momentum given to the medium by a fast moving parton in terms of linear viscous hydrodynamics and the amount of particles produced by this energy-momentum in terms of the Cooper-Frye formula.
- Events characterized by energy loss or by location of the hard scattering within the medium.
- The expanding medium cannot be characterized by single values of \hat{q} or η / s, though the second one of these coefficients shows a milder dependence on r or ΔE.
- For conditions present in nuclear collisions at high energies, it is important to characterize the events in terms of a given observable, such as the amount of energy loss (missing p_{t}), before extracting a particular value for the transport coefficients.

