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• Goal: Find a relation between q̂ and η/s

• Tool: Rely on linear viscous hydro to describe deposit of
energy-momentum within medium

• Treat the medium as expanding: Important to follow fast
parton path from where it was produced

• Characterize events in terms of an observable: Energy loss that
can be quantified in terms of missing pt

• Message is that medium cannot be described with a
single value of η/s nor of q̂ but values for these
coefficients can be obtained for events classified in terms
of a given ∆E
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Fast parton moving in medium

Jν(x) = 〈
dE

dx
〉δ(x − vt)vν

• vν ≡ (1, v), v is the corresponding parton velocity

• 〈dEdx 〉 is the average energy-loss per unit length

R. B. Neufeld, T. Renk. Phys. Rev. C. 82. 044903 (2010).
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Energy-momentum deposited described by linear, small viscosity hydro

Medium’s total energy-momentum Tµν form initial Tµν
0 perturbed

by fast parton

Tµν = T
µν
0 + δTµν

Small deviations from equilibrium hydro equations

∂µT
µν
0 = 0

∂µδT
µν = Jν

Express tensor components in terms of energy density δǫ and
momentum density g transferred by fast parton to the medium

δT 00
0 ≡ δǫ

δT 0i ≡ g i

δT ij ≡ c2s δǫδ
ij −

3

4
Γs(∂

ig j + ∂jg i −
2

3
∇ · gδij )

Γs ≡
4η

3ǫ0(1 + c2s )
= 4η/3sT sound attenuation length

Initial medium’s energy density and temperature: ǫ0, T0
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Equations more easily solved in Fourier space

δǫ(ω, k) =
ikJL + J0(iω − Γsk

2)

ω2 − c2s k
2 + iΓsωk2

gL(ω, k) =
iωJL + ic2s k̂J

0

ω2 − c2s k
2 + iΓsωk2

gT (ω, k) =
iJT

ω + 3
4 iΓsk

2

JL ≡ (J · k̂) k̂

JT ≡ J− JL
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Solutions in coordinate space [α = |z − vt|/
(

3Γs
2v

)

, β = xT/
(

3Γs
2v

)

]
A. A., I. Dominguez, M. E. Tejeda-Yeomans, Phys. Rev. C 88, 025203 (2013).
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Particle multiplicity

Particle momentum distribution (Cooper-Frye)

E
dN

d3p
=

1

(2π)3

∫

dΣµp
µ[f (p · u)− f (p0)]

Constant time freeze-out hyper surface: dΣµp
µ = E d3r .

Equilibrium distribution (Boltzmann): f0 = e−pT /T0 .

Distribution generated by deposited energy-momentum:

f (x⊥, p⊥)− f0 ≃
(

pT
T0ǫ0

)(

δǫ
ǫ0
+

gy (x⊥) sinφ+gz(x⊥) cosφ
ǫ0(1+c2s )

)

e−pT /T0

Angle between g and ẑ: φ
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Particle distribution around parton direction of motion depends on the
relative strength of gy (the coefficient of sinφ) and gz (the coefficient of
cosφ)
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Probability density to produce particles around fast parton’s direction of
motion

Use Cooper-Frye distribution and divide by total number of
particles N

P(pT , r , φ) =
1

N

dN

pTdpTd2r

The average momentum squared carried by the disturbance,
transverse to the direction of the fast parton is

〈q2〉 ≡ 2

∫

d2r

∫

dpTpT

∫ π/2

0
dφ P(pT , r , φ)p

2
T sin2 φ

Explicitly

〈q2〉 = 20 T 2
0

∫

d2r
[

π
8 δǫ+

(4/3)gy+(2/3)gz
(1+c2s )

]

∫

d2r
[

π
4 δǫ+

2gy+2gz
(1+c2s )

]
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q̂ from 〈q2〉 and medium’s length L

• Can 〈q2〉 be identified with the average momentum squared
given to the fast parton by the medium and therefore with q̂
upon dividing by the medium’s length L?

• The calculation refers to the average momentum squared given
to the medium by the fast parton.

• If the parton’s change in energy is small the main effect on the
fast parton is a deflection of its original trajectory.

• As a result of energy and momentum conservation during this
deflection, the momentum put into the medium should
compensate the momentum given to the fast parton.

• Since in a hydrodynamical picture, the energy-momentum is
described in terms of δǫ and g, we can write for the parameter
q̂

q̂ = 〈q2〉/L
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q̂: Static vs expanding medium

q̂ = 20
T 2
0

L

∫

d2r
[

π
8 δǫ+

(4/3)gy+(2/3)gz
(1+c2s )

]

∫

d2r
[

π
4 δǫ+

2gy+2gz
(1+c2s )

]

• For the static case, the expression for q̂ is essentially
independent of η/s.

• What happens if the medium is expanding?

• Classify events according to energy loss ∆E and in-medium
travelled length L(r, n̂), where r and n̂ are the location of hard
scattering and direction of propagation of fast parton.

q̂∆E =
20 T 2

0

∫

d2r
(

π
8 δǫ+

(4/3)gy+(2/3)gz
(1+c2s )

)

∆E
∑

∆E L(r, n̂)
∫

d2r
(

π
4 δǫ+

2gy+2gz
(1+c2s )

)

∆E

.
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Longitudinally expanding medium

L(r, n̂) =
1

2

(

√

R2
A − r2 sinϕ− r cosϕ

)

Take as the energy loss per unit length
(

dE

dx

)

=
∆E

L(r, n̂)
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Model for longitudinally expanding medium
H. Zhang, J. F. Owens, E. Wang, and X.-N Wang, Phys. Rev. Lett. 98, 212301 (2007)

• ρg : gluon density;
ρ0: central gluon density;
τ0: formation time; λ0: mean free path

medium’s influence time

∫

∞

τ0

dτ
τ − τ0
τ0 ρ0

ρg (τ,b, r + n̂τ)

∫

∞

τ0

dτ
1

λ0 ρ0
ρg (τ,b, r + n̂τ)

∆E = 〈L/λ0〉 =
〈dE

dx

〉

1d

〈n〉 ≡
〈dE

dx

〉

1d

average number of scatterings
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Model for longitudinally expanding medium
H. Zhang, J. F. Owens, E. Wang, and X.-N Wang, Phys. Rev. Lett. 98, 212301 (2007)

• ρg : gluon density; ρ0: central gluon density;
TA: Thickness function; b: impact parameter;
RA: nuclear radius; λ0: mean free path.

ρg (τ,b, r, n̂) =
τ0 ρ0
τ

πR2
A

2A
[TA(|r + n̂τ |) + TA(|b− r− n̂τ |)]

〈dE

dx

〉

1d
= ǫ0

[ E

µ0
− 1.6

]1.2[
7.5 +

E

µ0

]−1

• µ0 = 1.5 GeV; ǫ0 = 2 GeV/fm, tuned to descirbe RAA at LHC
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Medium’s influence time and average number of scatterings, central
collisions
A. A., J. Jalilian-Marian, A. Ortiz, G. Paic, J. Magnin, M. E. Tejeda-Yeomans, Phys. Rev. C 84, 024915 (2011)

medium’s influence time average number of scatterings
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Relating η/s and q̂

q̂∆E =
20 T 2

0

∫

d2r
(

π
8 δǫ+

(4/3)gy+(2/3)gz
(1+c2s )

)

∆E
∑

∆E L(r, n̂)
∫

d2r
(

π
4 δǫ+

2gy+2gz
(1+c2s )

)

∆E

η

s
∼

mean free path

thermal wavelength
= T

L(r, n̂)

〈n〉
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q̂ vs ∆E (trigger particle)
A. A., I. Dominguez, J. Jalilian-Marian, M. E. Tejeda-Yeomans, Phys. Rev. C 94, 024913 (2016)

Use MadGraph 5 to generate parton events at random positions
r, moving in random directions n̂
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q̂ vs r (trigger particle)
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η/s vs ∆E (trigger particle)
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η/s vs r (trigger particle)
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q̂ vs η/s (trigger particle)
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SUMMARY AND CONCLUSIONS

• A non-trivial behavior of the transport coefficients q̂ and η/s
with the the location of the hard scattering and with the
energy loss characterizing the events is obtained for an
expanding medium.

• Model the amount of energy and momentum given to the
medium by a fast moving parton in terms of linear viscous
hydrodynamics and the amount of particles produced by this
energy-momentum in terms of the Cooper-Frye formula.

• Events characterized by energy loss or by location of the hard
scattering within the medium.

• The expanding medium cannot be characterized by single
values of q̂ or η/s, though the second one of these coefficients
shows a milder dependence on r or ∆E .

• For conditions present in nuclear collisions at high energies, it
is important to characterize the events in terms of a given
observable, such as the amount of energy loss (missing pt),
before extracting a particular value for the transport
coefficients.


