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e Goal: Find a relation between g and 7/s

e Tool: Rely on linear viscous hydro to describe deposit of
energy-momentum within medium

e Treat the medium as expanding: Important to follow fast
parton path from where it was produced

e Characterize events in terms of an observable: Energy loss that
can be quantified in terms of missing p;

e Message is that medium cannot be described with a
single value of 7)/s nor of § but values for these
coefficients can be obtained for events classified in terms
of a given AE
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Fast parton moving in medium

e v¥ = (1,v), v is the corresponding parton velocity

° (%) is the average energy-loss per unit length

R. B. Neufeld, T. Renk. Phys. Rev. C. 82. 044903 (2010).
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Energy-momentum deposited described by linear, small viscosity hydro

Medium’s total energy-momentum T form initial T} perturbed
by fast parton
v
T =T +6TH
Small deviations from equilibrium hydro equations
L
0Ty =0
00T = J

Express tensor components in terms of energy density de and
momentum density g transferred by fast parton to the medium

STY = e
6TV = g
N .3 . ) N
STV = 20V — 21508 +g' =3V -gd")
4
s = B 47n/3sT sound attenuation length

360(1 + Cs2)

Initial medium's energy density and temperature: ¢g, Tg
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Equations more easily solved in Fourier space

ikd, + J0(iw — T5k?)

k =
oe(w. k) w2 — C2K2 + iT swk?
iwdy + ic2k SO
k) = s
gu(w, k) w? — c2k? + iT swk?
i)t
k) = 5
erlw k) = e
JL = (J . ﬁ) ﬁ

JT = J—JL
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Solutions in coordinate s = 3
pace [a = |z — vt s) 3= 3L
A. A., I. Dominguez, M. E. Tejeda-Yeomans, Phys. Rev. C 88,|£2£2g\‘3’/ ()201/5). XT/ ( 2v )]
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Particle multiplicity

Particle momentum distribution (Cooper-Frye)

ESTI\;IJ — # / d¥,p"[f(p- u) — f(po)]

Constant time freeze-out hyper surface: d¥,,p# = E d3r.
Equilibrium distribution (Boltzmann): fy = e P/ To,
Distribution generated by deposited energy-momentum:

f(XJ_,pJ_) —fy~ (7%20) (tz_; + gy(XL)sierz)Eiul—i_-szg(;L)cos¢) e—p7/To

Angle between g and z: ¢
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Particle distribution around parton direction of motion depends on the
relative strength of g, (the coefficient of sin¢) and g, (the coefficient of

cos @)
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Probability density to produce particles around fast parton's direction of
motion

Use Cooper-Frye distribution and divide by total number of

particles N
1 dN
7)(I)TJ r7¢)) - NppoTd2r

The average momentum squared carried by the disturbance,
transverse to the direction of the fast parton is

w/2
@ =2 [ d [dorr [ do P(or.r.o)psint o

Explicitly
r 4/3 2/3)g.
[ d?r [gée—i- 4/ )(glyjc(g)/ )8 ]

[ d2r [5oe+ 3

(¢°) =20 T§
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g from (g?) and medium'’s length L

e Can (g?) be identified with the average momentum squared
given to the fast parton by the medium and therefore with g
upon dividing by the medium’s length L?

e The calculation refers to the average momentum squared given
to the medium by the fast parton.

e If the parton’s change in energy is small the main effect on the
fast parton is a deflection of its original trajectory.

e As a result of energy and momentum conservation during this
deflection, the momentum put into the medium should
compensate the momentum given to the fast parton.

e Since in a hydrodynamical picture, the energy-momentum is
described in terms of de and g, we can write for the parameter
q
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g: Static vs expanding medium

(4/3)8,+(2/3)e:
0L2fd2 r g0 + Cp |

L e e )

e For the static case, the expression for § is essentially
independent of 7/s.

e What happens if the medium is expanding?

e Classify events according to energy loss AE and in-medium
travelled length L(r, ), where r and i are the location of hard
scattering and direction of propagation of fast parton.

(1+cf)

20 T02 f d2r (W(Se 4 (4/3)gy+ (2/3)g2)
aAE - L - d> Py 2gy+2g- =
Saelled) [ o (50e+ )
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Longitudinally expanding medium

1
L(r,d) = 5 <1/Rf\— r2sin g — rcosgo)

Take as the energy loss per unit length
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Model for longitudinally expanding medium
H. Zhang, J. F. Owens, E. Wang, and X.-N Wang, Phys. Rev. Lett. 98, 212301 (2007)

® pg: gluon density;
po: central gluon density;
To: formation time; Ag: mean free path

medium’s influence time

dE *©  T—19 .
= =(— dt 7,b,r + T
AE = (L/20) = () / — sl )

dE /oodT ! 7,b,r+n
N o L +n7—
< >1d Ao Po Pa )

dx T0

{n)

average number of scatterings
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Model for longitudinally expanding medium
H. Zhang, J. F. Owens, E. Wang, and X.-N Wang, Phys. Rev. Lett. 98, 212301 (2007)

® pg: gluon density; po: central gluon density;
Ta: Thickness function; b: impact parameter;
Ra: nuclear radius; Ag: mean free path.

R2
pe(r.b.r.A) = L ZPA[Ty(jr + frf) + Ta(lb —r — fir)]
dE E 1.2 Eq-1
— = ¢|——1. 75+ —
(Goh = ol 29 154 5)

e 1o =15 GeV; ¢g = 2 GeV/fm, tuned to descirbe Rap at LHC
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Medium'’s influence time and average number of scatterings, central

collisions
A. A., J. Jalilian-Marian, A. Ortiz, G. Paic, J. Magnin, M. E. Tejeda-Yeomans, Phys. Rev. C 84, 024915 (2011)
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Relating n/s and g

Do
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G vs AE (trigger particle)
A. A, I. Dominguez, J. Jalilian-Marian, M. E. Tejeda-Yeomans, Phys. Rev. C 94, 024913 (2016)

Use MadGraph 5 to generate parton events at random positions
r, moving in random directions i
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G vs r (trigger particle)
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n/s vs AE (trigger particle)
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n/s vs r (trigger particle)
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g vs n/s (trigger particle)
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SUMMARY AND CONCLUSIONS

e A non-trivial behavior of the transport coefficients § and 7/s
with the the location of the hard scattering and with the
energy loss characterizing the events is obtained for an
expanding medium.

e Model the amount of energy and momentum given to the
medium by a fast moving parton in terms of linear viscous
hydrodynamics and the amount of particles produced by this
energy-momentum in terms of the Cooper-Frye formula.

e Events characterized by energy loss or by location of the hard
scattering within the medium.

e The expanding medium cannot be characterized by single
values of § or 1/s, though the second one of these coefficients
shows a milder dependence on r or AE.

e For conditions present in nuclear collisions at high energies, it
is important to characterize the events in terms of a given
observable, such as the amount of energy loss (missing p;),
before extracting a particular value for the transport
coefficients.



