High-p_T v_n Harmonics in PbPb Collisions at 5.02 TeV

Quan Wang
(U. of Kansas)

for the CMS Collaboration

Hard Probes 2016, Wuhan

25th Sept, 2016
Fourier harmonics v_n

$$\frac{dN(p_T)}{d\phi} \propto 1 + \sum 2v_n(p_T)\cos[n(\phi - \Psi_n)]$$
Motivation

- Fourier harmonics v_n
 \[
 \frac{dN(p_T)}{d\phi} \propto 1 + \sum 2v_n(p_T)\cos[n(\phi - \Psi_n)]
 \]

- Low p_T
 - Collectivity, hydrodynamics
 - Geometry(v_2) + fluctuations ($v_3,4,...$)
Motivation

➢ Fourier harmonics v_n

$$\frac{dN(p_T)}{d\phi} \propto 1 + \sum 2v_n(p_T)\cos[n(\phi - \Psi_n)]$$

➢ Low p_T
 - Collectivity, hydrodynamics
 - Geometry(v_2) + fluctuations ($v_3,4...$)

➢ High p_T
 - Path length dep. energy loss

\[\sum \]
Motivation

- Fourier harmonics v_n
 \[\frac{dN(p_T)}{d\phi} \propto 1 + \sum 2 v_n(p_T) \cos[n(\phi - \Psi_n)] \]

- Low p_T
 - Collectivity, hydrodynamics
 - Geometry(v_2) + fluctuations ($v_{3,4}$...)

- High p_T
 - Path length dep. energy loss
Motivation

- Fourier harmonics v_n
 \[
 \frac{dN(p_T)}{d\phi} \propto 1 + \sum 2v_n(p_T) \cos[n(\phi - \Psi_n)]
 \]

- Low p_T
 - Collectivity, hydrodynamics
 - Geometry(v_2) + fluctuations ($v_{3,4}$...)

- High p_T
 - Path length dep. energy loss
 - $R_{AA}(p_T)$: average energy loss

\[\sum_{n=0}^{\infty} \frac{1}{n+1} \frac{dN}{dp_T} \propto \frac{1}{(\ln p_T)^{1+\Delta}}\]

\begin{align*}
 &\sum_{n=0}^{\infty} \frac{1}{n+1} \frac{dN}{dp_T} \\
 &\propto \frac{1}{(\ln p_T)^{1+\Delta}}
\end{align*}

\[PRL \ 116 \ (2016) \ 132302\]
Motivation

- Measurement of high p_T v_n
 - Complementary to $R_{AA}(p_T, \phi)$
 - Initial state + energy loss
- **2015 PbPb run at LHC**
 - $\sqrt{s_{NN}} = 5.02$ TeV, 404 μb$^{-1}$
 - MinimumBias ($p_T < 14$ GeV/c)

- **High p_T track trigger**
 - $|\eta| < 1.0$, $14.0 < p_T < 100$ GeV/c
Scalar Product

\[Q_n = \sum_j w_j e^{i n \phi_j} \]

Sum over tracks (tracker), or towers (HF)
Scalar Product

\[Q_n = \sum_j w_j e^{i\phi_j} \]

Sum over tracks (tracker), or towers (HF)

\[v_n \{\text{SP}\} = \frac{\langle Q_n \cdot Q_{nA}^* \rangle}{R} \]

- Large \(\eta \) gap applied (\(|\Delta \eta|>3.0\))

Tracker

HF-

-5 \(<\eta< -3 \)

HF+

3 \(<\eta< 5 \)

\(Q_{nA} \)

\(Q_n \)

HF- – HF+

\(-1 \quad 0 \quad 1 \)
Scalar Product

\[Q_n = \sum_j w_j e^{i \phi_j} \]

Sum over tracks (tracker), or towers (HF)

\[v_n \{\text{SP}\} = \frac{\langle Q_n \cdot Q_{nA}^* \rangle}{\sqrt{\langle Q_{nA} \cdot Q_{nB}^* \rangle \langle Q_{nA} \cdot Q_{nC}^* \rangle}} \]

\[\sqrt{\langle Q_{nB} \cdot Q_{nC}^* \rangle} \]

- Large \(\eta \) gap applied (\(|\Delta\eta| > 3.0\))
- \(v_n \{\text{SP}\} \), non-ambiguous measure of RMS \(v_n \)
Results – $v_2\{SP\}$ high p_T

- FIRST time measure of $v_2\{SP\}$ up to 100 GeV/c
- $v_2\{SP\}$ remains positive at very high p_T
Low $p_T v_2$ increase from most-central to mid-central, then decrease

v_2 increase with p_T, peaked ~ 3 GeV/c, decrease while increasing p_T
Results – $v_2\{\text{SP}\}$

CMS Preliminary

PbPb $\sqrt{s_{\text{NN}}} = 5.02$ TeV

CMS-PAS-HIN-15-014

30 – 50%

R_{AA}

$25.8 \, \text{pb}^{-1} (5.02 \, \text{TeV pp}) + 404 \, \mu \text{b}^{-1} (5.02 \, \text{TeV PbPb})$

CMS

Preliminary

T_{AA} and lumi. uncertainty

$|\eta|<1$

CMS-PAS-HIN-15-015
Results – $v_2\{SP\}$

At high p_T, less suppressed, more isotropic (less v_2)
Results – $v_3\{SP\}$ high p_T

- FIRST time measure of $v_3\{SP\}$ up to 100 GeV/c
- Consistent with 0 for $p_T > 30$ GeV/c

CMS Preliminary

PbPb $\sqrt{s_{NN}} = 5.02$ TeV

CMS-PAS-HIN-15-014
Results – $v_3\{SP\}$ low p_T

- FIRST time measure of $v_3\{SP\}$ up to 100 GeV/c
- Consistent with 0 for $p_T > 30$ GeV/c
- Little centrality dependence for v_3
Results – $v_3\{SP\}$ low p_T

- FIRST time measure of $v_3\{SP\}$ up to 100 GeV/c
- Consistent with 0 for $p_T > 30$ GeV/c
- Little centrality dependence for v_3

Multi-particle or few particle?
Cumulant

- Reference: $|\eta| < 2.4, 1 < p_T < 5 \text{ GeV/c}$

\[
\nu_n \{4\} = \sqrt[4]{-c_n \{4\}}
\]

\[
\nu_n \{6\} = \sqrt[6]{c_n \{6\}} / 4
\]

\[
\nu_n \{8\} = \sqrt[8]{-c_n \{8\}} / 33
\]

- 4-, 6-, 8-particle Q-Cumulant

[A. Bilandzic et.al., PRC 83 (2011) 044913]
• Reference: $|\eta| < 2.4$, $1 < p_T < 5$ GeV/c

• Particle of interest (POI): $|\eta| < 1.0$

\[
v_n\{4\}(p_T) = -d_n\{4\}/(-c_n\{4\})^{3/4}
\]
\[
v_n\{6\}(p_T) = \frac{d_n\{6\}}{4}/\left(\frac{c_n\{6\}}{4}\right)^{5/6}
\]
\[
v_n\{8\}(p_T) = \frac{-d_n\{8\}}{33}/\left(\frac{-c_n\{8\}}{33}\right)^{7/8}
\]

$d_n\{m\}$: 1 particle from POI within given p_T range, $m-1$ particles from Ref.
• Reference: $|\eta| < 2.4$, $1 < p_T < 5$ GeV/c
• Particle of interest (POI): $|\eta| < 1.0$
• Multi-particle cumulant $v_n\{m\}$
 – Suppress correlations with few particle ($<m$)
Results – $v_2\{4,6,8\}$

- FIRST time measure multi-particle $v_2\{4,6,8\}$ up to 100 GeV/c
- Multi-particle $v_2\{4,6,8\}$ seems converge with $v_2\{SP\}$ at high p_T
- Multi-particle nature of high p_T particles – Initial state effect
Results – $v_2\{4,6,8\}$

- Low p_T, $v_2\{SP\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$
- Expected in hydrodynamics
Results – $v_2\{4,6,8\}$

- Low p_T, $v_2\{\text{SP}\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$
- Expected in hydrodynamics
Results – $v_2\{4,6,8\}$

- Low p_T, $v_2\{\text{SP}\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$
- Expected in hydrodynamics
Results – $v_2\{$high$\}$ vs $v_2\{$low$\}$
Results – $v_2\{\text{high}\}$ vs $v_2\{\text{low}\}$

- High p_T v_2 strongly correlated with low p_T v_2
- Suggestion of initial state effect
Results – $v_2\{\text{high}\}$ vs $v_2\{\text{low}\}$

- High p_T v_2 strongly correlated with low p_T v_2
- Suggestion of initial state effect
- Slope decrease while increasing p_T
Results – Compare to Models

- CUJET3.0 fails over full \(p_T \) and centrality dependence
 - JHEP 02 (2016) 169
- SHEE with linear energy loss has good agreement
 - arXiv:1609.05171
Summary

- $v_2\{\text{SP}\}$, $v_3\{\text{SP}\}$ and $v_2\{4,6,8\}$ up to 100 GeV/c
- Non-zero v_2 observed at very high p_T
- $v_2\{4,6,8\}$ show multi-particle nature at high p_T
- $v_3\{\text{SP}\}$ is consistent with zero for $p_T > 30$ GeV/c
- Strongly correlated high p_T v_2 and low p_T v_2
Backup
CMS Preliminary
PbPb $\sqrt{s_{NN}} = 5.02$ TeV

ALICE, $|\eta| < 0.8$
- $v_2\{2\}, |\Delta \eta| > 1$
- $v_3\{2\}, |\Delta \eta| > 1$
- $v_2\{4\}$

CMS, $|\eta| < 1.0$
- $v_2\{2\}, |\Delta \eta| > 3$
- $v_3\{2\}, |\Delta \eta| > 3$
- $v_2\{4\}$

0-5%

30-40%

10-20%

20-30%
