Prompt $D^0 v_n$ harmonics in PbPb at 5.02 TeV with CMS

Jian Sun
Purdue University
for the CMS Collaboration

Hard Probes 2016, Wuhan, China
September 24th, 2016
Motivation

- Heavy quarks are primarily produced at the early stages of the collisions
 - Experience the full evolution of the medium
 - Good probes of the medium

- At low p_T, to what extent heavy quarks flow with the medium is a good measure of the interaction strength.
 - Information on the degree of medium thermalization

- At high p_T, v_n harmonics are sensitive to the path length dependence of the heavy quark energy loss
 - Complementary to R_{AA}
Dataset and trigger

- 2015 PbPb run at 5.02 TeV
- Large minbias and centrality triggered PbPb sample
 - 0-100%: 170M events
 - 30-100%: 270M events

→ Measurement of $D^0 v_2$ and v_3 in PbPb at 5.02 TeV
 - Centrality classes 0-10%, 10-30% and 30-50%
 - Wide p_T range (1-40 GeV)
 - CMS PAS HIN-16-007
Analysis workflow

- D^0 reconstruction
 - Candidates with two tracks
 - Topological selections

- Extract $D^0 \, \nu_n$ in data
 - Scalar product method
 - Fit on mass spectra and ν_n vs mass

- Evaluate the effect from non-prompt D^0
 - Prompt D^0 fraction from impact parameter fit
D^0 Reconstruction

- D^0 → K\pi, BR = 3.88\pm0.05\%, c\tau(D^0) = 122.9 \ \mu m

- D^0 candidates
 - Pairing oppositely charged tracks
 - Secondary vertex reconstruction

- Topological selections:
 - 3D decay length significance (d_0/\sigma(d_0))
 - Pointing angle \alpha
 - Secondary vertex probability
 - Impact parameter of D^0 candidates (b_0)
 - b_0 < 80 \ \mu m (0.008 cm)
Invariant mass spectra fit

Invariant mass fitted with:
- 3rd order polynomial for combinatorial background
- Double gaussian for signal
- Single gaussian for $k-\pi$ swapped candidates
 - No PID. Candidates with wrong mass assignment on tracks
Scalar Product Method

\[Q_n = \sum_j w_j e^{in\phi_j} \]

Sum over tracks (tracker), or towers (HF)

\(w_j \): tower \(E_T \) for HF, track \(p_T \) for tracker

\[v_n \{ \text{SP} \} = \sqrt{\frac{\langle Q_n \cdot Q_{nA}^* \rangle}{\langle Q_{nA} \cdot Q_{nB}^* \rangle}} \frac{\langle Q_{nA} \cdot Q_{nC}^* \rangle}{\langle Q_{nB} \cdot Q_{nC}^* \rangle} \]

Large \(\eta \) gap applied (\(|\Delta \eta|>3.0\))

\(v_n \{ \text{SP} \} \), non-ambiguous measure of \(\sqrt{\langle v_n^2 \rangle} \)

Luzum, Ollitrault PRC87 (2013), 044907
Extract v_n of D^0

$$
\nu_n^{ Sig+Bkg}(m_{inv}) = \alpha(m_{inv})\nu_n^{ sig} + (1 - \alpha(m_{inv}))\nu_n^{ Bkg}(m_{inv})
$$

$$
\alpha(m_{inv}) = (Signal(m_{inv}) + Swapped(m_{inv}))/ (Signal(m_{inv}) + Swapped(m_{inv}) + Bkg(m_{inv}))
$$

- $\alpha(m_{inv})$ is the signal fraction from mass spectrum fit
- $\nu_n^{ S+B}$ is v_n of D^0 candidates in each mass bin.
- $\nu_n^{ Sig}$ is the v_n of D^0, a fit parameter
- $\nu_n^{ Bkg}$ is v_n of combinatorial background candidates and modeled by a linear function of mass
Extract v_n of D^0

- Simultaneous fit on invariant mass distribution and v_n vs mass is performed
Systematic uncertainty from non-prompt D^0

- D^0 in data is a mixture of prompt and non-prompt D^0
 \[v_n^{\text{sig}} = f_{\text{prompt}} v_n^{\text{prompt}} + (1-f_{\text{prompt}}) v_n^{\text{non-prompt}} \]

- To evaluate the effect from non-prompt D^0, prompt D^0 fraction is needed

- Different b_0 distributions of prompt D^0 and non-prompt D^0
- Template fit on b_0 distributions to evaluate prompt D^0 fraction
 - Fit in whole b_0 region
The prompt D^0 fraction is around 75-95% after all analysis cuts.

The impact parameter cut suppress the non-prompt D^0 by around 50%.
Systematic uncertainties from non-prompt D^0 are evaluated in a data driven method based on:

- v_n of D^0 with all analysis cut and w/o b_0 cut
- Fractions of prompt D^0 with all analysis cut and w/o b_0 cut

All analysis cut:

$$v_{n,1}^{\text{sig}} = f_{p,1} v_{n}^{p} + (1-f_{p,1}) v_{n}^{np}$$

Without b_0 cut:

$$v_{n,2}^{\text{sig}} = f_{p,2} v_{n}^{p} + (1-f_{p,2}) v_{n}^{np}$$

$$v_{n}^{p} = v_{n,1}^{\text{sig}} + \frac{1-f_{p,1}}{f_{p,1}-f_{p,2}} (v_{n,1}^{\text{sig}} - v_{n,2}^{\text{sig}})$$

D^0 v_n with all analysis cuts as central value

As systematics from non-prompt D^0
Prompt $D^0 v_2$ results

- Positive prompt $D^0 v_2$ observed in studied p_T range
 - Low p_T: charm quarks take part in the collective motion of the system
 - High p_T: indicates path length dependence of energy loss

- Peaks around 3 GeV, then decrease vs p_T

- Low p_T: v_2 (0-10%) $< v_2$ (10-30%) $\approx v_2$ (30-50%)
Prompt D^0 v_2 compared with v_2 of charged particle

- In 0-10%, consistent with v_2 of charged particles
- In 10-30% and 30-50%
 - Low p_T: v_2 (prompt D^0) < v_2 (charged particle)
 - High p_T: v_2 (prompt D^0) ≈ v_2 (charged particle)
- Similar shape
- At low p_T, smaller centrality dependence in 10-50% than charged particle v_2
Prompt $D^0 v_2$ compared with model calculations

- **LBT**: linearized Boltzmann transport model for jet propagation in QGP
- **TAMU**: non-perturbative transport model with thermodynamic T-matrix approach
- **CUJET3**: jet quenching model based on DGLV
- **L. Pang**: second order viscosity hydrodynamic model

Theory prediction for prompt D^0

CMS Preliminary PbPb $\sqrt{s_{NN}} = 5.02$ TeV

- **Cent. 0-10%**
 - |y| < 1.0
 - Charged particle
 - CMS-PAS-HIN-15-014

- **Filled box**: syst. from non-prompt D^0
- **Open box**: other syst.

- **Theory prediction for prompt D^0**
 - LBT
 - TAMU
 - CUJET3

- **LBT**: Cao, Luo, Qin, Wang PRC 94 014909 (2016)
- **TAMU**: He, Fries, Rapp PLB 735 (2014) 445
- **CUJET3**: Xu, Liao, Gyulassy JHEP 1602 (2016) 169
Prompt $D^0 v_3$ results

- First measurement of $D^0 v_3$
- p_T dependence
 - Low p_T: v_3 (prompt D^0) > 0;
 - High p_T: v_3 (prompt D^0) ≈ 0
 - Peaks around 3 GeV, then decrease vs p_T
- Little centrality dependence
Prompt D^0 v_3 compared with v_3 of charged particle

- In 0-10%, consistent with v_3 of charged particles
- In 10-30% and 30-50%
 - Low p_T: v_3 (prompt D^0) $<$ v_3 (charged particle)
 - High p_T: v_3 (prompt D^0) \approx v_3 (charged particle)
- Similar shape
- Both have little centrality dependence
Prompt D⁰ v₃ compared with model calculations

LBT: linearized Boltzmann transport model for jet propagation in QGP

LBT: Cao, Luo, Qin, Wang PRC 94 014909 (2016)
Summary

- Prompt D^0 v_2 and v_3 is measured for centrality 0-10%, 10-30% and 30-50%
 - First measurement of D^0 v_3
 - Positive v_2 in both low and high p_T ranges
 - Positive v_3 in low p_T range

- The prompt D^0 v_2 and v_3 is compared with those of charged particle
 - Low p_T: v_n (prompt D^0) < v_n (charged particle)
 - High p_T: v_n (prompt D^0) ≈ v_n (charged particle)

- The results provide important input for theoretical studies
CMS has measured R_{AA} of prompt D^0 in PbPb both at 2.76 TeV and 5.02 TeV.

D^0 flow and R_{AA} can be used simultaneously to constrain models.

See J. Wang’s talk on D^0 R_{AA}, 24 Sep. 14:40
More mass spectra fit

Top: \(p_T \) 1-2 GeV for centrality 10-30% and 30-50%

Bottom: \(p_T \) 2-3 GeV for centrality 0-10%, 10-30% and 30-50%
D^0 v_2 compared with ALICE and STAR results

CMS Preliminary PbPb \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV

CMS preliminary results are consistent with ALICE results within uncertainties

M. Lomnitz, QM 2015 talk
Δφ Bins Method

- D⁰ v_n can also be measured by fitting d⁰N/(dp_TdΔφ) with:
 \[N_0(1+2v_n^{obs}\cos(n\Delta\phi)) \]
 - Δφ between D⁰ candidates and event planes
 - Large η gap applied (|Δη|>3.0)

- v_n^{obs} corrected by event plane resolution: v_n^{sig} = v_n^{obs}/R_n

- Measuring ambiguous value between average v_n and RMS of V_n

Luzum, Ollitrault PRC87 (2013), 044907
D⁰ v₂ from SP and Δφ bins method

Results from SP method and Δφ bins method are consistent within uncertainties
❖ Small differences are expected
Results from SP method and $\Delta \phi$ bins method are consistent within uncertainties

- Small differences are expected
Prompt $D^0 R_{AA}$ compared with LBT model

S. Cao SQM 2016 talk
G. Qin SQM 2016 talk

CMS PAS HIN-16-001
CMS PAS HIN-15-015

LBT: Cao, Luo, Qin, Wang PRC 94 014909 (2016)