Data-driven analysis of the temperature and momentum dependence of the heavy-quark transport coefficient

Yingru Xu

Duke University

yx59@phy.duke.edu

Sep, 2016

In collaboration with : Shanshan Cao Marlene Nahrgang Steffen A. Bass

results

HQ in-medium evolution

a challenge for simultaneously describing R_{AA} and v_2 results!

Figure : PbPb collision at the LHC: comparison between models and experimental observables

results

HQ transport model

figure credit: Hannah Petersen(Au-Au collisions)

initial condition

spatial IC: T_RENTo **momentum IC**: pQCD

HQ in-medium

HQ transport: Langevin (col + rad) medium: hydrodynamic

hadronization

hybrid model: fragmentation + recombination

initial condition

position space: T_RENTo (A parametric IC model)

• entropy deposition proportional to reduced thickness function

$$\left. \frac{ds}{dy} \right|_{\tau=\tau_0} \propto \left(\frac{T_A + T_B}{2} \right)^{1/p}$$
 J.S.Moreland, J.Bernhard, and S.A.Bass Phys.Rev.C 92, 011901(2015)

- p = 0 (geometric mean), $\frac{ds}{dy} \propto \sqrt{T_A T_B}$ (mimic the behavior of IP-glasma model)
- heavy quark initial production probability:

$$_{ au= au_0} \propto T_A T_B$$

momentum space: Leading order pQCD

• parton distribution funciton: CTEQ5

S.Cao, G.Qin, and S.A.Bass, Phys.Rev.C 92, 024907(2015)

 $\frac{dN}{dv}$

• nuclear shadowing effect: EPS09

results

H.Song and U.W.Heinz, Phys.Rev.C 77, 064901(2008)

calibration of the medium

medium evolution

- (2+1)D viscous hydro: iEbE-VishNU
- $\bullet\,$ temperature-dependent shear vis $+\,$ bulk vis correction
- $(\eta/s)(T) = (\eta/s)_{min} + (\eta/s)_{slope}(T T_c)$
- all the initial/medium related parameters are calibrated by Bayesian model-to-data comparison with experimental observables (yields, mean p_T, flow cumulants v_n{2})
 J.Bernhard, J.S.Moreland, S.A.Bass, J.Liu, and U.Heinz

Phys.Rev.C 94, 024907(2015)

results

HQ in-medium evolution

HQ propagation

- S.Cao, G.Qin, and S.A.Bass, Phys.Rev.C 92, 024907(2015)
- improved Langevin transport model

$$\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi} + \vec{f_g}$$
(1)

- drag force: $\eta_D(p) = \kappa/(2TE)$
- thermal random force: $\left< \xi^i(t) \xi^j(t') = \kappa \delta^{ij} \delta(t-t') \right>$
- recoil force from gluon radiation: $\vec{f_g} = -d\vec{p_g}/dt$
- gluon emission probability:

$$\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s P(x)\hat{q_g}}{\pi k_{\perp}^4} \sin^2(\frac{t-t_i}{2\tau_f})(\frac{k_{\perp}^2}{k_{\perp}^2+x^2M^2})^4 \qquad (2)$$

• $\hat{q_g} = \hat{q}C_A/C_F = 2\kappa C_A/C_F$, $D_s = 2T^2/\kappa$

- physical properties of the system encapsulated in parameters of the model
- Bayesian analysis allows us to simultaneously calibrate all model parameters through model-to-data comparison
- find the optimal parameters such that the model best describes the experimental observables
- extract the probability distribution of all parameters

temp-dependent parameterization of diffusion coefficient

$$D_{s} = T^{2}/\hat{q}, \ \hat{q} = \hat{q}_{pQCD} * preK * (1 + K_{T}e^{-\frac{(I-I_{c})^{2}}{2\sigma_{T}^{2}}})$$

difficulties

HQ transport model run \propto 2hrs for 10 events produced; 10000 events needed for event-by-event study $\Rightarrow O(10^4)$ CPU hours to evaluate one input \vec{x}_*

Latin hypercube design 120 input parameters $X = (\vec{x}_1, \vec{x}_2, ..., \vec{x}_{120})$

results

T-dependence results: Model outputs

an analysis

T-dependence results: GP training

GP emulator prediction, validated by model outputs

results

T-dependence results: calibation outputs after calibration

results

T-dependence results: MCMC (calibration)

results

posterior probability distribution of parameters

Bayesian analysis

results

other parameterization

- T-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_T e^{-\frac{(T-T_c)^2}{2\sigma_T^2}})$
- p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}})$
- T,p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}}) * (1 + K_T e^{-\frac{(T-T_c)^2}{2\sigma_T^2}})$

Bayesian analysis

results

other paramterization

• T-dependence:
$$\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_T e^{-\frac{(T-T_C)^2}{2\sigma_T^2}})$$

- p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}})$
- T,p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}}) * (1 + K_T e^{-\frac{(T T_c)^2}{2\sigma_T^2}})$

Bayesian analysis

results

other paramterization

• T-dependence:
$$\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_T e^{-\frac{(T-T_C)^2}{2\sigma_T^2}})$$

- p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}})$
- T,p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}}) * (1 + K_T e^{-\frac{(T T_c)^2}{2\sigma_T^2}})$

Bayesian analysis

results

other paramterization

- T-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_T e^{-\frac{(T T_c)^2}{2\sigma_T^2}})$
- p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}})$
- T,p-dependence: $\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}}) * (1 + K_T e^{-\frac{(T T_c)^2}{2\sigma_T^2}})$

summary

• By applying Bayesian model-to-data analysis, we are able textract the temperature and momentum dependence of \hat{q}, D_s from data

- Simultaneous agreement of R_{AA} and v_2 compared to data
- Discrepancies of the parameter posterior distribution between RHIC and the LHC energies: possible hint of temperature and momentum dependence that is not fully captured in our parameterization
- Improve uncertainty analysis (systematic/statistic error); more extension on other experimental observables, etc..

backups

T_RENTo (A parametric IC model) Ansatz:

entropy density proportional to generalized mean of local nuclear density:

$$s\propto \left(rac{T_A^{
ho}+T_B^{
ho}}{2}
ight)^{1/
ho}$$

• p=-1,
$$\frac{2T_AT_B}{T_A+T_NB}$$

• p = 0, $\sqrt{T_AT_B}$
• p = 1, $\frac{T_A+T_B}{2}$

initial condition

position space: T_RENTo (A parametric IC model)

• entropy deposition: $\frac{ds}{dy} \propto \sqrt{T_A T_B}$

momentum space: Leading order pQCD

- parton distribution funciton: CTEQ5
- nuclear shadowing effect: EPS09

Bayes' theorem

(3)

$$P(ec{x}_*|X,Y,ec{y}_{exp}) \propto P(X,Y,ec{y}_{exp}|ec{x}_*)P(ec{x}_*)$$

- $X = (\vec{x}_1, \vec{x}_2, ..., \vec{x}_m)$: input parameters $Y = (\vec{y}_1, \vec{y}_2, ..., \vec{y}_m)$: output of the model
- P(x_{*}|X, Y, y_{exp}): posterior possibility distribution for x_{*} for given X, Y, y_{exp}
- $P(X, Y, \vec{y}_{exp} | \vec{x}_*)$: likelihood

$$P(X, Y, \vec{y}_{exp} | \vec{x}_{*}) \propto \exp\left(-\frac{1}{2}(\vec{y}_{*} - \vec{y}_{exp})^{T} \Sigma^{-1}(\vec{y}_{*} - \vec{y}_{exp})\right)$$
(4)

- $P(\vec{x}_*)$: prior possibility distribution of \vec{x}_* (Our initial knowledge of the input parameters)
- with experimental statistical error as uncertainty: $\Sigma = diag(\sigma_{exp}^2 y_{exp})$

Bayesian model-to-data comparison

Figure : find the 'true' paramter θ , extract the shape of paramters by doing model-to-data analysis

Guassian Process emulator

A substitution of the model to rapidly calculate the output

- physics process: $y_{exp} = PhyP(\vec{t}) + \delta$, \vec{t} is known variables , eg. $\sqrt{s_{NN}}$
- model simulation: $y = Model(\vec{t}, \vec{x}) + \epsilon_1 \Rightarrow y_{exp} \sim Model(\vec{t}, \vec{\theta})$
- Gaussian process emulator: $Model(\vec{t}, \vec{x}) = GP(\vec{t}, \vec{x}) + \epsilon_2$ $\Rightarrow y \sim GP(\mu(\vec{x}), \sigma(\vec{x}, \vec{x'}))$
- $\delta, \epsilon_{1,2}$ are the errors(sys, stats)
- $\mu(\vec{x})$ mean vector, $\sigma(\vec{x}, \vec{x'})$ the covariance function of each pair $(\vec{x}, \vec{x'})$

Gaussian process

Definition:

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

- Stochastic function: $\vec{x} \rightarrow y$
- \vec{x} : n-dimensional input vector; y: normally distributed output
- specified by:
 - mean function $\mu(\vec{x})$
 - covariance function $\sigma(\vec{x}, \vec{x}')$
 - this study: $\sigma(\vec{x}, \vec{x}') = \sigma_{GP}^2 exp\left[-\frac{\vec{x}-\vec{x}'}{2l^2}\right] + \sigma_n^2 \delta_{xx'}$

conditioning a Gaussian process

Given: training inputs points X and training outputs Y at X predict: $\vec{x_*} \Rightarrow y_*$

The predictive distribution at arbitrary test points \vec{x}_* is the multivariate-normal distribution

•
$$y_* = N(\mu, \Sigma)$$

•
$$\mu = \sigma(X, X_*)\sigma(X, X)^{-1}y$$

• $\Sigma = \sigma(X, X_*) - \sigma(X_*, X)\sigma(X, X)^{-1}\sigma(X, X_*)$

Likelihood function:

$$log P(Y|X, \vec{\theta}) = -\frac{1}{2} Y^T \Sigma^{(-1)}(x, \vec{\theta}) Y - \frac{1}{2} |\Sigma(X, \vec{\theta})| - \frac{N}{2} log(2\pi)$$
(5)

Gaussian Process emulator

Gaussian Process:

- stochastic function: maps inputs to normally-distributed outputs
- specified by mean and covariance functions
- non-parametric interpolation
- predicts probabilities distributions: narrow near training points, wide in gaps
- fast surrogate to real physical model

principle component analysis

Many highly correlated outputs \Rightarrow principle component analysis^{Theory 6} PCs = eigenvectors of outputs covariance matrix

$$Y = USV^{T}$$
(6)
$$Y^{T}Y = V\Lambda V^{T}$$
(7)

transform data into orthogonal, uncorrelated linear combinations:

$$Z = \sqrt{m}YV, Y = \frac{1}{\sqrt{m}}ZV^{T}$$
(8)

Markov Chain Monte Carlo

posterior distribution is sampled with MCMC method

- Random walk in parameter space, where each step is accepted or rejected based on a relative likelihood
- Converges to posterior distribution as number of steps $N
 ightarrow \infty$
- accptance fraction $\alpha_{\rm f}$ of steps measures the quality of random walk
 - $\alpha_f \simeq 0 \Rightarrow$ walker "stuck"
 - $\alpha_f \simeq 1 \Rightarrow$ pure random walk
 - aim for 0.2-0.5
- autocorrelation time = Number of steps between indepedence samples "Burn-in" talks a few correlations, gathering enough samples \simeq 0(10)autocorrelations

results: input

input parameters \vec{x} :

•
$$\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}})$$

•
$$\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_T e^{-\frac{(1 - I_c)^2}{2\sigma_T^2}})$$

•
$$\hat{q} = \hat{q}_{pQCD} * preK * (1 + K_p e^{-\frac{|p|^2}{2\sigma_p^2}}) * (1 + K_T e^{-\frac{(T - T_c)^2}{2\sigma_T^2}})$$

	param	range1	range2	range3
	k _p	N/A	0-15	0-12
	σ_p	N/A	0.1-10.5	0.1-10.5
	k _T	0-5	N/A	1-5
	σ_T	0.001-0.5	N/A	0.001-0.5
	preK	0.1-1.4	0.1-2.0	0.3-1.4

param 2 results: GP training

20 validation $\vec{x} \Rightarrow \vec{y} = Model(\vec{x})$ compare with $\vec{y} = GP(\vec{x})$

output from calibration $\vec{y^*}$:

param 3 results: model output output from the model \vec{y} : training data

param 3 results: calibration output output from calibration $\vec{y^*}$:

0.35

