D_S^{\pm} meson production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in STAR

Long Zhou (for the STAR Collaboration)
University of Science and Technology of China
Overview of the talk

• Motivation

• Experimental Setup
 - Heavy Flavor Tracker

• Physics results in Au+Au collisions
 - Analysis method
 - Nuclear modification factor (R_{AA})
 - Elliptic flow (v_2)

• Summary
Why strange charmed meson?

- Better constrain total charm yield
- Study hadronization mechanism
 - The medium created in heavy-ion collisions enhances strange quark production
 - R_{AA} of D_s meson is expected to be larger than non-strange D meson if charm quarks hadronize via coalescence in the medium
- More sensitive to properties of Quark Gluon Plasma
 - Elliptic flow of D_s is expected to be smaller than that of non-strange D meson as a result of earlier freeze-out for D_s meson.

Experimental Setup

- Excellent PID and tracking
- Full azimuthal coverage
- Pseudo-rapidity coverage ~ ±1
HFT detector

- Four-layer silicon detector
- Resolution of Distance of Closest Approach (DCA)
 - $\sim 30 \mu m$ at high p_T
 - $< 50 \mu m$ for 750 MeV/c kaons
D_s reconstruction

- **Dataset**
 - Au+Au collisions at $\sqrt{s_{NN}} = 200\text{GeV}$ recorded in 2014
 - 750M minimum bias events (~70% of collected data in 2014)

- **Event Selection**
 - $|\text{Vertex Z}| < 6 \text{ cm}$

- **Decay channel of interest**
 - $D_s \rightarrow \phi(1020) + \pi \rightarrow K^+ + K^- + \pi$
 - Branch ratio : 2.32 %
 - Decay length : $c\tau = 149.9 \mu m$

- **Reconstruction strategy**
 - Use HFT to reconstruct secondary vertex
 - Topological cuts to suppress background
 - Require M_{KK} in ϕ meson mass range

2016/9/24
Long Zhou / USTC & BNL

Courtesy of Peter Filip
Particle identification using TPC

TPC PID: Using energy loss (dE/dx)
Particle identification using TOF

TPC PID: Using energy loss (dE/dx)

TOF PID: Using time-of-flight (β)*

*TOF PID is applied only when β information is available.
\[p_T \] integrated \(D_s \) signal

- First \(D_s \) meson signal observed at RHIC.
Mean and width

- Mean is consistent with PDG value.
- Width is consistent with simulation.
D_S meson spectrum and R_{AA}

- pp reference was obtained from charm cross-section measured by STAR scaled by $c \rightarrow D_S$ fragmentation factor1

- The R_{AA} of D_S is higher than D^0 R_{AA} but statistically not significant.
Model calculation for $D_s R_{AA}$

- Both D_s and $D^0 R_{AA}$ are consistent with model calculations within uncertainty.
- Hint of enhancement in D_s meson production.
The ratio D_s/D^0 seems to be higher than the prediction for p+p collisions from PYTHIA, but not significant.
Mass effect on D_s/D^0 ratio

Blast-wave model:
- Blast-wave parameters obtained from fitting D^0 spectra\(^1\)
- Mass effect is small, and it alone can not account for the difference in D_s/D^0 ratio between PYTHIA and data.

D_S/D^0 ratio: RHIC vs. LHC

- Consistent with ALICE, they following the same trend.
- Need measurements with better precision.
Elliptic flow v_2

- First measurement of D_s v_2 in heavy-ion experiment.
Summary and outlook

• D_s meson is a good probe to study the mechanism of charm hadronization and the properties of Quark-Gluon Plasma

• We have observed a clear signal of D_s meson at RHIC for the first time.

• D_s in 10-40% central Au+Au collisions at $\sqrt{s_{NN}} = 200$:
 - The R_{AA} of D_s is higher than D^0 but statistically not significant
 - D_s/D^0 ratio seems to be higher compared to PYTHIA, indicating coalescence between charm and strange quarks in the medium.

• Stay tuned for Run 14+16 data with increased statistics and improved detector efficiency + resolution
 - A factor of 2 improved HFT tracking efficiency in re-processed data was obtained after fixing a bug in PXL decoder software.
 - We will also use this decay channel ($D_s \rightarrow K^*(892) + K \rightarrow K^+ + K^- + \pi$) to improve our measurement precision.
 - Run14 + Run16(3B MB events) : observing the splitting of R_{AA} and v_2 for D_s and D^0 may be possible.
Back up
Blast wave

Fragmentation factor:

\[c \rightarrow D^0 \quad c \rightarrow D_s \]

Compare to k/π ratio

![Graph comparing D_s/D^0 to k/π ratios]