

Measurements of the suppression and anisotropy of heavy-flavour particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with ALICE

- D mesons via hadronic decay channels
- Electrons from heavy-flavour hadron decays
- Muons from heavy-flavour hadron decays

Andrea Dubla
(GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany)
for the ALICE Collaboration

Physics motivation

- → Charm and beauty quarks are produced in hard scattering processes (large Q²) in the early stage of the collision
- → They experience the full evolution of the system → sensitive probes of the properties of the hot and dense QCD matter (QGP)
- Expected to lose energy while traversing the medium
- Do heavy quarks participate in the collective expansion of the medium?
- → **Hadronization**: fragmentation vs coalescence
- → Need reference measurements in pp and p-Pb collisions
 - → Perturbative QCD describes the cross sections measured in pp collisions.

(talk Grazia Luparello: Saturday 24th – 8:30)

ALICE detector

D mesons via hadronic decay channels

- Analysis based on reconstruction of decay vertex topologies displaced from the primary vertex
- TPC and TOF are used to identify π and K and to reduce the combinatorial background
- Signal extraction through invariant mass analysis

|y| < 0.8

JHEP 03 (2016) 081

Electrons from heavy-flavour hadron decays

- **Low-** p_{T} electrons (p_{T} < 3 GeV/c): PID via TPC dE/dx complemented with TOF and ITS
- **High-p_T** electrons ($p_T > 3 \text{ GeV/}c$): PID using TPC, EMCal

-1 σ < (TPC dE/dx - <TPC dE/dx>_e)TPC < 3 σ (TPC dE/dx - <TPC dE/dx>_e)TPC < -4 σ

Main background sources:

- direct and decay
 γ conversions
- π⁰ and η Dalitz decays

|*y*| < 0.7

Background subtraction:

- Measured: invariant mass method (e⁺e⁻ pairs)
- Calculated: cocktail method based on data.

Muons from heavy-flavour hadron decays

 $-4 < \eta < -2.5$

Track selection:

- Acceptance and geometrical cuts
- Muon trigger matching:
 reject the hadrons that cross the absorber
- Select tracks pointing back to the vertex:
 Remove tracks from beam-gas interactions

Remaining main background:

- μ from primary π and K decays (subtracted with MC-tuned cocktail)
- μ from W/Z/ γ * decays at high p_T

Study in-medium energy loss

- Production of hard probes (heavy quarks, jets...) in A-A collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
- Observable: nuclear modification factor

$$R_{\rm AA}(p_{\rm T}) = \frac{dN_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA}\rangle d\sigma_{\rm pp}/dp_{\rm T}} \text{-} \frac{\textit{QCD} \text{ medium}}{\textit{QCD} \text{ vacuum}}$$

- If no nuclear effects are present $\rightarrow R_{AA} = 1$ (binary scaling)
- In-medium parton energy loss via radiative (gluon emission) and collisional processes depending on:
 - → color charge
 - → quark mass (dead cone effect)
 - → path length and medium density

 $\Delta E_{\rm g} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}$

Need to compare R_{AA}^{Π} , R_{AA}^{D} , R_{AA}^{B}

Dokshitzer and Kharzeev, PLB 519 (2001) 199 Wicks, Gyulassy, J.Phys. G35 (2008) 054001

New high $p_T R_{AA}$ measurements in several Pb-Pb centrality classes show stronger suppression in the 10% most central collisions respect to semi-central collisions. Stronger energy loss in central collisions due to the increase of medium density

New R_{AA} measurements in 0-10% central Pb-Pb collisions are extented down to p_T = 0.5 GeV/c

- \rightarrow low- p_T measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section
 - → systematic uncertainty dominated by the pp reference at the same collision energy (Phys. Rev. D 91 (2015) 012001)
 - → Suppression compatible with the one observed in the muon decay channel

(talk Zuman Zhang: Sunday 25th – 10:40)

- R_{pPb} consistent with unity (PLB 754 (2016) 81) \rightarrow no strong modification of heavy-flavour decay electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_{T} in Pb-Pb collisions
 - → final-state effect due to heavy quarks in-medium energy loss

- R_{pPb} consistent with unity (PLB 754 (2016) 81) → no strong modification of heavy-flavour decay electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_T in Pb-Pb collisions
 - → final-state effect due to heavy quarks in-medium energy loss
- R_{AA} compatible within uncertainties with PHENIX (PRL 98, (2007) 172) at low p_{T}

D-meson and pion nuclear modification factor

- Expected hierarchy in the energy loss:
 - $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \stackrel{?}{\longrightarrow} R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$
- D-meson and π R_{AA} as a function of p_T and $< N_{part} >$ are compatible within uncertainties
- Consistency between $R_{AA}(D)$ and $R_{AA}(\pi)$ described by models taking into account:
 - $\rightarrow \Delta E_g > \Delta E_{u,d,s} > \Delta E_c$
 - \rightarrow different shape of the parton p_T spectra
 - → different parton fragmentation functions

D-meson and $J/\psi \leftarrow B$ R_{AA} vs centrality

- pQCD model including mass-dependent radiative and collisional energy loss predicts a difference between the D-meson and non-prompt J/ ψ R_{AA} similar to that observed
- Similar pattern from other calculations (e.g. BAMPS, WHDG, Vitev et al.)

Beauty-decay electron R_{AA}

- Analysis based on the electron impact parameter distribution.
- First R_{AA} measurement of beauty-decay electron:
 - $\rightarrow R_{AA} < 1$ for $p_T > 3$ GeV/c
 - → consistent with the picture of mass-dependent radiative and collisional energy loss

Collectivity: azimuthal anisotropy

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
- In addition, path-length dependent energy loss induces an asymmetry in momentum space
- Observable: elliptic flow v_2 = 2nd Fourier coefficient of the particle azimuthal distribution

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2\nu_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

Heavy-flavour v_2 measurements probe:

Low/intermediate p_T: collective motion,
 degree of thermalization of heavy quarks and hadronization mechanism (recombination)

High p_T: path-length dependence of heavy-quark energy loss

Leptons from heavy-flavour hadron decays

HF-decay muons $-4 < \eta < -2.5$ PLB 753, (2016) 41

HF-decay electrons |y| < 0.7 arXiv:1606.00321

 v_2 of heavy-flavour decay **electrons** (at mid-rapidity) and **muons** (at forward rapidity) are similar in the different centrality classes. Positive v_2 observed $\rightarrow 5.9\sigma$ effect for $2 < p_T < 2.5$ GeV/c in 20-40% centrality class for the heavy-flavour decay electrons.

Hint for an increase of v_2 from central to semi-central collisions as observed for D mesons Suggests collective motion of low- p_T charm quarks in the expanding fireball

D-meson elliptic flow

Positive $v_2(D)$ observed (5 σ effect for 2 < p_T < 6 GeV/c in 30-50% centrality class)

D-meson v_2 similar to charged-particle v_2 Confirms significant interaction of charm quarks with the medium

Model predictions: R_{AA} and v_2

 v₂ and R_{AA} measurements for different heavy-flavour decay channels together start to provide constraints for models

```
- POWLANG: EPJ C 75 (2015) 121;
- TAMU: arXiv:1401.3817;
- MC@HQ+EPOS: PRC 89 (2014) 014905;
- WHDG: Nucl. Phys. A 872 (2011) 256;
- BAMPS: PLB 717 (2012) 430;
arXiv:1310.3597v1[hep-ph];
- UrQMD: arXiv:1211.6912[hep-ph];
J.Phys. Conf. Ser. 426 (2013) 012032;
- Cao,Quin, Bass: PRC 88 (2013);
- Vitev:: PRC 80 (2009) 054902;
- Djordjevic: PRL 737 (2014) 298
```

Conclusion

- \rightarrow Strong suppression of heavy-flavour yields at high $p_T \rightarrow$ final-state effect
 - D mesons at central rapidity
 - Semi-leptonic decays at central and forward rapidity
- \rightarrow Larger suppression for **D mesons** with respect to **B mesons** (non-prompt J/ψ by CMS) at high $p_{\rm T}$
 - Described by theoretical models implementing mass-dependent energy loss
- \rightarrow Hint for R_{AA} < 1 for beauty decay electrons at high p_{T}
- → A non-zero elliptic flow of heavy flavours was measured in semi-central collisions
- \rightarrow Hint for an increase of heavy-flavour v_2 from central to semi-central collisions
 - D-meson elliptic flow similar to charged-particle v_2
 - 5.9σ effect in 20-40% centrality class for the heavy-flavour decay electrons
- \rightarrow Suggests collective motion of low- p_T heavy quarks (mainly charm)
- \rightarrow Comparison of **different observables** (R_{AA} , v_2) with theory starts to constrain the **energy-loss and hadronization models**

BACKUP

20

A. Dubla HP2016, GSI

Model predictions: R_{AA} and v_2

- v₂ and R_{AA} measurements for different heavy-flavour decay channels together start to provide constraints for models.
- \rightarrow Both collisional and radiative energy loss mechanisms and an expanding medium seem to be needed to describe v_2 and R_{AA} for most of the model.
- ightarrow Role of recombination of heavy quark in the medium seems to help in describing \emph{v}_2

Nuclear modification factor: D_s⁺

- Measurement of D_s⁺ production in Pb-Pb collisions
- Expectation: enhancement of the strange over non-strange D-meson yield at intermediate p_T if charm hadronizes via recombination in the medium, due to enhanced strangeness abundance

JHEP 03 (2016) 082

- Strong D_s^+ suppression in central collisions (similar to other D-meson) for $8 < p_T < 12 \text{ GeV/}c$
 - Hint of less suppression for p_T < 8 GeV/c

TAMU: PRL 110 (2013) 112301 Andronic et al. PLB 659 (2008) 149 Kuznetsova, Rafelski EPJ C51 (2007) 113

D-meson nuclear modification factor

- R_{pPb} consistent with unity (PRL 113 (2014) 232301) → no strong modification of D-meson spectra in p-Pb collisions relative to pp collisions
- **Large suppression** of D-mesons at high p_T in **Pb-Pb** collisions → larger suppression in the 10% most central collisions → **final-state effect** due to charm quark in-medium energy loss
- **D-meson** R_{AA} compatible within uncertainties with D^0 R_{AA} by STAR for $p_T > 2$ GeV/c
 - ightarrow low- $p_{\rm T}$ measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section₂₃

R_{AA} of beauty decay electrons

ALTCE

and J/ψ ← B

- Indication of suppression $R_{AA}(J/\Psi \leftarrow B)$ in central events at high p_T
- $-R_{AA}$ measurement of beauty:
 - \rightarrow Hint for R_{AA} < 1 for beauty-decay electrons in p_T > 3 GeV/c

- models including in-medium energy loss can describe qualitatively

the measured suppression

Model predictions: $R_{\Delta\Delta}$ and v_2

 v₂ and R_{AA} measurements together start to provide constraints for models

- TAMU: arXiv:1401.3817; - MC@HQ+EPOS: PRC 89 (2014) 014905; - WHDG: Nucl. Phys. A 872 (2011) 256; - BAMPS: PLB 717 (2012) 430; arXiv:1310.3597v1[hep-ph]; - UrQMD: arXiv:1211.6912[hep-ph];

UrQMD: arXiv:1211.6912[hep-ph];
 J.Phys. Conf. Ser. 426 (2013) 012032;
 Cao,Quin, Bass: PRC 88 (2013);

- Vitev:: PRC 80 (2009) 054902;

- Djordjevic: PRL 737 (2014) 298

25

HP2016, GSI

Model predictions: D-meson R_{AA} and v_2

- models including in-medium energy loss can describe qualitatively the measured strong suppression ($R_{\rm AA}$ < 1) of the yield at high $p_{\rm T}$ and the anisotropy (v_2 > 0)
- $-v_2^D$ and R_{AA}^D measurements together start to provide constraints for models

Model predictions: HFM R_{AA} and v_2

TAMU: arXiv:1401.3817;
 MC@HQ+EPOS: PRC 89 (2014) 014905;
 BAMPS: PLB 717 (2012) 430; arXiv:1310.3597v1[hep-ph];

- Similar picture from the comparison of $R_{\rm AA}$ and v_2 to models as for other heavy-flavour measurements.
 - → Models of in-medium parton energy loss can describe reasonably well heavy-flavour decay muons at forward rapidity.
- v_2^{HFM} and R_{AA}^{HFM} measurements together start to provide constraints for models

D-meson and pion R_{AA}

= Expected hierarchy in the energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \stackrel{?}{\longrightarrow} R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

- D meson and π R_{AA} as a function of p_T and N_{part} are compatible within uncertainties

D-meson and pion R_{AA}

Centrality 0-10% arXiv:1509.06888

MC@sHQ+EPOS2: PRC 89 (2014) 014905

TAMU: PLB 735 (2014) 445

- \rightarrow low- p_{T} measurements better described by model including nuclear shadowing (EPS09)
- \rightarrow low- p_{T} measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section

D meson and $J/\psi \leftarrow B$ R_{AA} vs centrality

MC@sHQ+EPOS2: PRC 89 (2014) 014905

TAMU: PLB 735 (2014) 445

→ Models including mass dependence energy loss predict a difference between D-meson and non-promt J/ψ similar to that observed.

p_T-differential cross section

Model predictions: D meson R_{AA} and v_2

POWLANG: JPG 38 (2011) 124144; Eur. Phys.J. C71 (2011) 1666; - TAMU: arXiv:1401.3817;
 MC@HQ+EPOS: PRC 89 (2014) 014905; - WHDG: Nucl. Phys. A 872 (2011) 256;
 BAMPS: PLB 717 (2012) 430; arXiv:1310.3597v1[hep-ph]; - UrQMD: arXiv:1211.6912[hep-ph];
 J.Phys. Conf. Ser. 426 (2013) 012032; - Cao,Quin, Bass: PRC 88 (2013);

In-plane

Out-of-plane

R_{AA} measured in-plane and out-of-plane, sensitive to

arXiv: 1405.2001; PRL 111, 102301 (2013)

- path length dependence of parton energy loss at high p_{T}
- collectivity at low p_T

D-Meson elliptic flow:

- Event plane method (TPC 0<η<0.8 or VZERO event plane)
- · Extraction of the D-meson yield in- and out-of-plane

$$v_2\{\text{EP}\} = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}.$$

Consistent between the three D-meson species

Positive D-meson $v_{a}(v_{a}^{D})$ observed

5.7 σ effect for D⁰, D⁺, D⁺ averaged for 2 < $p_{_{\rm T}}$ < 6 GeV/c in 30-50% centrality

