Measurements of the suppression and anisotropy of heavy-flavour particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE

- D mesons via hadronic decay channels
- Electrons from heavy-flavour hadron decays
- Muons from heavy-flavour hadron decays

Andrea Dubla
(GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) for the ALICE Collaboration
Physics motivation

→ Charm and beauty quarks are produced in hard scattering processes (large Q^2) in the early stage of the collision.

→ They experience the full evolution of the system → sensitive probes of the properties of the hot and dense QCD matter (QGP).

→ Expected to lose energy while traversing the medium.

→ Do heavy quarks participate in the collective expansion of the medium?

→ Hadronization: fragmentation vs coalescence.

→ Need reference measurements in pp and p-Pb collisions.
 → Perturbative QCD describes the cross sections measured in pp collisions.

(talk Grazia Luparello: Saturday 24th – 8:30)
ALICE detector

EMCal: trigger, electron ID

V0: trigger, centrality and event plane determination

ITS: tracking, vertexing and PID via dE/dx

TRD: tracking, electron ID

TOF: PID via time of flight

TPC: tracking, PID via dE/dx, event plane determination

Forward muon spectrometer
D mesons via hadronic decay channels

- Analysis based on reconstruction of decay vertex topologies displaced from the primary vertex
- TPC and TOF are used to identify π and K and to reduce the combinatorial background
- Signal extraction through invariant mass analysis

$$5 < p_T < 8 \text{ GeV/c}$$

$$8 < p_T < 16 \text{ GeV/c}$$

- **D^0**
 - $D^0 \rightarrow K^-\pi^+$
 - $c\tau \sim 123 \mu m$
 - BR$\sim 3.88\%$

- **D^+**
 - $D^+ \rightarrow K^-\pi^+\pi^+$
 - $c\tau \sim 312 \mu m$
 - BR$\sim 9.13\%$

- **D^{*+}**
 - $D^{*+} \rightarrow D^0\pi^+$
 - BR$\sim 67.7\%$

- **$D^0 \rightarrow K^-\pi^+\pi^+$**
 - $c\tau \sim 312 \mu m$
 - BR$\sim 9.13\%$

- **$D^{*+} \rightarrow D^0\pi^+$**
 - BR$\sim 67.7\%$

- **$D_s^+ \rightarrow \phi \pi^+ \rightarrow K^-K^+\pi^+$**
 - $c\tau \sim 150 \mu m$
 - BR$\sim 2.28\%$

${|y| < 0.8}$

JHEP 03 (2016) 081

A. Dubla

HP2016, GSI
Electrons from heavy-flavour hadron decays

- **Low-**\(p_T\) electrons (\(p_T < 3 \text{ GeV/c}\)): PID via TPC dE/dx complemented with TOF and ITS
- **High-**\(p_T\) electrons (\(p_T > 3 \text{ GeV/c}\)): PID using TPC, EMCal

Main background sources:
- direct and decay \(\gamma\) conversions
- \(\pi^0\) and \(\eta\) Dalitz decays

Background subtraction:
- Measured: invariant mass method (e\(^+\)e\(^-\) pairs)
- Calculated: cocktail method based on data.
Muons from heavy-flavour hadron decays

-4 < η < -2.5

Track selection:
- Acceptance and geometrical cuts
- Muon trigger matching:
 - reject the hadrons that cross the absorber
- **Select tracks pointing back to the vertex:**
 - Remove tracks from beam-gas interactions

Remaining main background:
- μ from primary π and K decays
 - (subtracted with MC-tuned cocktail)
- μ from $W/Z/\gamma^*$ decays at high p_T
Study in-medium energy loss

- Production of hard probes (heavy quarks, jets...) in A-A collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling).

- Observable: nuclear modification factor

$$R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{\langle T_{AA} \rangle d\sigma_{pp}/dp_T} \sim \frac{\text{QCD medium}}{\text{QCD vacuum}}$$

- If no nuclear effects are present $\rightarrow R_{AA} = 1$ (binary scaling).

- In-medium parton energy loss via radiative (gluon emission) and collisional processes depending on:
 \begin{align*}
 &\rightarrow \text{color charge} \\
 &\rightarrow \text{quark mass (dead cone effect)} \\
 &\rightarrow \text{path length and medium density}
 \end{align*}

$\Rightarrow \Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
Need to compare R_{AA}^{n}, R_{AA}^{D}, R_{AA}^{B}

Dokshitzer and Kharzeev, PLB 519 (2001) 199
New high $p_T R_{AA}$ measurements in several Pb-Pb centrality classes show stronger suppression in the 10% most central collisions respect to semi-central collisions. Stronger energy loss in central collisions due to the increase of medium density.
New R_{AA} measurements in 0-10% central Pb-Pb collisions are extended down to $p_T = 0.5$ GeV/c → low-p_T measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section
→ systematic uncertainty dominated by the pp reference at the same collision energy (Phys. Rev. D 91 (2015) 012001)
→ Suppression compatible with the one observed in the muon decay channel (talk Zuman Zhang: Sunday 25th – 10:40)
Heavy-flavour decay electron nuclear modification factor

- R_{pPb} consistent with unity (PLB 754 (2016) 81) \rightarrow no strong modification of heavy-flavour decay electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_T in Pb-Pb collisions
 \rightarrow final-state effect due to heavy quarks in-medium energy loss
Heavy-flavour decay electron nuclear modification factor

- R_{pPb} consistent with unity (PLB 754 (2016) 81) → no strong modification of heavy-flavour decay electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_T in Pb-Pb collisions
 → final-state effect due to heavy quarks in-medium energy loss
- R_{AA} compatible within uncertainties with PHENIX (PRL 98, (2007) 172) at low p_T
D-meson and pion nuclear modification factor

- Expected hierarchy in the energy loss:
 \(\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \) \(\Rightarrow \) \(R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B) \)
- D-meson and \(\pi \) \(R_{AA} \) as a function of \(p_T \) and \(<N_{\text{part}}\) are compatible within uncertainties
- Consistency between \(R_{AA}(D) \) and \(R_{AA}(\pi) \) described by models taking into account:
 \(\rightarrow \Delta E_g > \Delta E_{u,d,s} > \Delta E_c \)
 \(\rightarrow \) different shape of the parton \(p_T \) spectra
 \(\rightarrow \) different parton fragmentation functions
D-meson and $J/\psi \leftrightarrow B$ R_{AA} vs centrality

- Similar $\langle p_T \rangle$ (~10 GeV/c) for D and B mesons ($J/\psi \leftrightarrow B$) from CMS
- Rapidity range slightly different
- Indication of $R_{AA}(D) < R_{AA}(J/\psi \leftrightarrow B)$ in central events at high p_T

✔ Djordjevic: non-prompt J/ψ R_{AA} considering for energy loss

✔ Djordjevic: D-meson R_{AA}

\[R_{AA} = \frac{\text{signal in AA collision}}{\text{signal in pp reference}} \]

- p_{QCD} model including mass-dependent radiative and collisional energy loss predicts a difference between the D-meson and non-prompt J/ψ R_{AA} similar to that observed
- Similar pattern from other calculations (e.g. BAMPS, WHDG, Vitev et al.)
Beauty-decay electron R_{AA}

- Analysis based on the electron impact parameter distribution.

- First R_{AA} measurement of beauty-decay electron:
 \[R_{AA} < 1 \text{ for } p_T > 3 \text{ GeV/c} \]
 \[\rightarrow \text{consistent with the picture of mass-dependent radiative and collisional energy loss} \]

\[b (\rightarrow c) \rightarrow e \]
\[b, c \rightarrow e \]

Figures:
- Left: ALICE, 0–20% Pb–Pb, $\sqrt{s_{NN}} = 2.76$ TeV
 - $1.5 < p_T < 2.0$ GeV/c
 - Data, Conversion electrons, Dalitz electrons

- Right: ALICE, 0–20% Pb–Pb, $\sqrt{s_{NN}} = 2.76$ TeV
 - $b (\rightarrow c) \rightarrow e$, $|y_{cms}| < 0.8$
 - $b, c \rightarrow e$, $|y_{cms}| < 0.6$

ArXiv: 1609.03898
Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy.

In addition, path-length dependent energy loss induces an asymmetry in momentum space.

Observable: elliptic flow $v_2 = 2^{\text{nd}}$ Fourier coefficient of the particle azimuthal distribution.

Heavy-flavour v_2 measurements probe:

- **Low/intermediate p_T**: collective motion, degree of thermalization of heavy quarks and hadronization mechanism (recombination).

- **High p_T**: path-length dependence of heavy-quark energy loss.
Leptons from heavy-flavour hadron decays

HF-decay muons
-4 < η < -2.5
PLB 753, (2016) 41

HF-decay electrons
|y| < 0.7
arXiv:1606.00321

v_2 of heavy-flavour decay electrons (at mid-rapidity) and muons (at forward rapidity) are similar in the different centrality classes. Positive v_2 observed \rightarrow 5.9σ effect for $2 < p_T < 2.5$ GeV/c in 20-40% centrality class for the heavy-flavour decay electrons.

Hint for an increase of v_2 from central to semi-central collisions as observed for D mesons
Suggests collective motion of low-p_T charm quarks in the expanding fireball
D-meson elliptic flow

Positive $v_2(D)$ observed (5σ effect for $2 < p_T < 6$ GeV/c in 30-50% centrality class)

D-meson v_2 similar to charged-particle v_2
Confirms significant interaction of charm quarks with the medium

$\Delta v_2 = \frac{1}{R^2} \left(\frac{2 N_{in-plane} - N_{out-of-plane}}{4 N_{in-plane} + N_{out-of-plane}} \right)$

PRL 111, 102301 (2013)
PRC 90 (2014) 034904
Model predictions: R_{AA} and ν_2

- ν_2 and R_{AA} measurements for different heavy-flavour decay channels together start to provide constraints for models
Strong suppression of heavy-flavour yields at high $p_T \rightarrow$ final-state effect
- D mesons at central rapidity
- Semi-leptonic decays at central and forward rapidity

Larger suppression for D mesons with respect to B mesons (non-prompt J/ψ by CMS) at high p_T
- Described by theoretical models implementing mass-dependent energy loss

Hint for $R_{AA} < 1$ for beauty decay electrons at high p_T

A non-zero elliptic flow of heavy flavours was measured in semi-central collisions

Hint for an increase of heavy-flavour v_2 from central to semi-central collisions
- D-meson elliptic flow similar to charged-particle v_2
- 5.9σ effect in 20-40% centrality class for the heavy-flavour decay electrons

Suggests collective motion of low-p_T heavy quarks (mainly charm)

Comparison of different observables (R_{AA}, v_2) with theory starts to constrain the energy-loss and hadronization models
BACKUP
Model predictions: \(R_{AA} \) and \(v_2 \)

\[R_{AA} \] and \(v_2 \) measurements for different heavy-flavour decay channels together start to provide constraints for models.

→ Both collisional and radiative energy loss mechanisms and an expanding medium seem to be needed to describe \(v_2 \) and \(R_{AA} \) for most of the model.

→ Role of recombination of heavy quark in the medium seems to help in describing \(v_2 \)
Nuclear modification factor: D_S^+

- Measurement of D_S^+ production in Pb-Pb collisions
- Expectation: enhancement of the strange over non-strange D-meson yield at intermediate p_T if charm hadronizes via recombination in the medium, due to enhanced strangeness abundance

JHEP 03 (2016) 082

- Strong D_S^+ suppression in central collisions (similar to other D-meson) for $8 < p_T < 12$ GeV/c
- Hint of less suppression for $p_T < 8$ GeV/c

TAMU: PRL 110 (2013) 112301
Andronic et al. PLB 659 (2008) 149
Kuznetsova, Rafelski EPJ C51 (2007) 113
D-meson nuclear modification factor

- **R_{pPb} consistent with unity** *(PRL 113 (2014) 232301)* → no strong modification of D-meson spectra in p-Pb collisions relative to pp collisions

- **Large suppression** of D-mesons at high p_T in Pb-Pb collisions → larger suppression in the 10% most central collisions → **final-state effect** due to charm quark in-medium energy loss

- D-meson R_{AA} compatible within uncertainties with $D^0 R_{AA}$ by STAR for $p_T > 2$ GeV/c → **lowp_T** measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section
R_{AA} of beauty decay electrons and $J/\psi \leftarrow B$

- Indication of suppression $R_{AA}(J/\Psi \leftarrow B)$ in central events at high p_T

- R_{AA} measurement of beauty:
 \rightarrow Hint for $R_{AA} < 1$ for beauty-decay electrons in $p_T > 3$ GeV/c

- models including in-medium energy loss can describe qualitatively the measured suppression

Graphs:

1. Graph showing R_{AA} vs. $p_T (\text{GeV}/c)$ for non-prompt J/Ψ
 - Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV
 - 0-20% and 20-100% CMS ($|y| < 2.4$)
 - 0-50% ALICE ($|y| < 0.8$)
 - Models: HTL, ALQCD, WHDG, AdS/CFT
2. Graph showing R_{PbPb} vs. $p_T (\text{GeV}/c)$ for $b(\rightarrow c) \rightarrow e$
 - Models: 0-20% Pb-Pb, FONLL + EPS09NLO shad., MC@sHQ+EPPOS2, Coll+Rad(LPM), BAMPS, $\kappa=1$, BAMPS, $\kappa=0.2$, WHDG, TAMU, POWLANG-IQCD ($T_{dec}=155$ MeV), POWLANG-HTL ($T_{dec}=155$ MeV), AdS/CFT

A. Dubla
HP2016, GSI

References:

- A. Dubla
- JHEP 1507 (2015) 051
- JHEP 1205 (2012) 063
- arXiv:1609.03898
Model predictions: \(R_{AA} \) and \(v_2 \)

\(v_2 \) and \(R_{AA} \) measurements together start to provide constraints for models.
Model predictions: D-meson R_{AA} and v_2

- models including in-medium energy loss can describe qualitatively the measured strong suppression ($R_{AA} < 1$) of the yield at high p_T and the anisotropy ($v_2 > 0$)
- v_2^D and R_{AA}^D measurements together start to provide constraints for models
Model predictions: HFM R_{AA} and v_2

Models of in-medium parton energy loss can describe reasonably well heavy-flavour decay muons at forward rapidity.

- Similar picture from the comparison of R_{AA} and v_2 to models as for other heavy-flavour measurements.
 → Models of in-medium parton energy loss can describe reasonably well heavy-flavour decay muons at forward rapidity.

- v_2^{HFM} and R_{AA}^{HFM} measurements together start to provide constraints for models.
Expected hierarchy in the energy loss:
\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \Rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B) \]

- D meson and π R_{AA} as a function of p_T and N_{part} are compatible within uncertainties.
D-meson and pion R_{AA}

Centrality 0-10%

arXiv:1509.06888

→ low-p_T measurements better described by model including nuclear shadowing (EPS09)

→ low-p_T measurements crucial in all systems to test binary scaling of total $c\bar{c}$ cross section
D meson and $J/\psi \leftrightarrow B$

R_{AA} vs centrality

$\text{MC@sHQ+EPOS2: PRC 89 (2014) 014905}$

$\text{TAMU: PLB 735 (2014) 445}$

$Pb-Pb, \ s_{NN} = 2.76 \text{ TeV}$

- D mesons (ALICE) $8<p_{T}<16 \text{ GeV/c, } |y|<0.5$
- Non-prompt J/ψ (CMS Preliminary)
 - $6.5<p_{T}<30 \text{ GeV/c, } |y|<1.2 \text{ CMS-PAS-HIN-12-014}$
 - (empty) filled boxes: (un)correlated syst. uncert.

$\text{MC@sHQ+EPOS2 Phys.Rev.C 89 (2014) 014905}$

D mesons
MC@sHQ+EPOS2
$\text{Non-prompt } J/\psi$
$\text{Non-prompt } J/\psi \text{ with c quark energy loss}$

$\langle N_{\text{part}} \rangle$

50-80\%
40-50\%
30-40\%
20-30\%
10-20\%
0-10\%

$\text{TAMU elastic Phys.Lett.B 735 (2014) 445}$

D mesons
MC@sHQ+EPOS2
$\text{Non-prompt } J/\psi$
$\text{Non-prompt } J/\psi \text{ with c quark energy loss}$

$\langle N_{\text{part}} \rangle$

50-80\%
40-50\%
30-40\%
20-30\%
10-20\%
0-10\%

\rightarrow Models including mass dependence energy loss predict a difference between D-meson and non-promt J/ψ similar to that observed.
$c, b \rightarrow (e^+ + e^-)/2$

- ITS+TOF+TPC eID, $|y| < 0.8$
- ALICE Preliminary
- TPC+EMCal eID, $|y| < 0.6$
- arXiv:1609.07104

ALICE

Pb-Pb, $s_{NN} = 2.76$ TeV
0-10% Centrality Class

$1/(2\pi p_T) \cdot 1/N_{ev} \cdot d^2 N/dp_T dy$ (GeV/c)$^{-2}$

p_T (GeV/c)
p_T-differential cross section

Heavy-flavour p_T-differential cross sections well described by pQCD calculations at both energies (7 and 2.76 TeV)

FONLL: JHEP 9805 (1998) 007
k_T Fact: PRD 62 (2000) 071502

A. Dubla

ALICE, JHEP 1201 (2012)

ALICE, PRL 109 (2012) 112301

ATLAS PLB 707 (2012) 438

Data: ECE 2016, GSI
Model predictions: D meson R_{AA} and v_2

R_{AA} measured in-plane and out-of-plane, sensitive to
- path length dependence of parton energy loss at high p_T
- collectivity at low p_T
D-Meson elliptic flow:

- Event plane method (TPC 0<η<0.8 or VZERO event plane)
- Extraction of the D-meson yield in- and out-of-plane

\[v_2\{\text{EP}\} = \frac{1}{R_2} \frac{\pi N_{\text{in-plane}} - N_{\text{out-of-plane}}}{4 N_{\text{in-plane}} + N_{\text{out-of-plane}}} \]

Consistent between the three D-meson species

Positive D-meson \(v_2 \) (\(v_2^0 \)) observed

5.7σ effect for \(D^0, D^+, D^{*+} \) averaged for \(2 < p_T < 6 \text{ GeV/c} \) in 30-50% centrality

ALICE collaboration, PRL 111, 102301 (2013)