Measurements of Electrons from Semi-leptonic Heavy Flavor Decays in p+p and Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Yaping Wang (for the STAR Collaboration)

Central China Normal University
Outline

• Motivation

• STAR Experiment at RHIC

• Non-Photonic Electron (NPE) Measurements
 - NPE production in p+p, Au+Au and U+U collisions
 - Separate D/B-decayed electrons in p+p and Au+Au collisions

• Summary and Outlook
Motivation

Heavy quarks (charm and bottom)

- Large masses, dominantly produced in hard scatterings at the early stage at RHIC energies
- Test the validity of pQCD in p+p collisions and provide the reference for measurements in heavy-ion collisions
- Probe to the QCD medium properties
 - energy loss (R_{AA})
 - thermalization (elliptic flow v_2)

Non-Photonic Electrons (NPE)

- Produced from semi-leptonic decays of open heavy flavor hadrons
- A good proxy to measure heavy flavor quark production
STAR Experiment at RHIC – STAR Detector

- EEMC
- Magnet
- MTD
- BEMC
- TPC
- TOF
- VPD
- BBC

Large acceptance
Excellent PID
Fast DAQ
Broad collision energy range
NPE Measurements – Data Analysis Methodology

Inclusive electrons
After electron ID

Non-photonic electrons
From D/B hadron decays

Photonic electrons
Partially reconstructed through e^+e^- pairs

Hadron contamination
Statistically subtracted

NPE yield after background correction:

$$N_{npe} = N_{inclusive} \times purity - N_{photonic} / \varepsilon_{photonic}$$

NPE invariant cross-section:

$$E \frac{d^3\sigma}{dp^3} = \frac{1}{L} \frac{1}{2\pi p_T dp_T dy} \frac{N_{npe}}{\varepsilon_{Total}}$$

$$\varepsilon_{Total} = \varepsilon_{dE/dx} \varepsilon_{BEMC} \varepsilon_{Trigger} \varepsilon_{Tracking}$$

- purity: purity of inclusive electron sample
- $\varepsilon_{photonic}$: photonic electron reco. efficiency
- $\varepsilon_{dE/dx}$, ε_{BEMC}, $\varepsilon_{Trigger}$, ε_{TOF}, $\varepsilon_{Tracking}$

- $p_T > 1.5$ GeV/c
- $p_T < 1.5$ GeV/c
Run12 200 GeV p+p collisions

Fit dE/dx Distribution to Extract Purity

-1 < nσ<3

Photonic Electron Reconstruction

3.5 < p_T < 4.5 GeV/c

Electron Reconstruction Eff.
Spectrum was extended to both lower and higher p_T regions.

Consistent with pQCD calculation and previous STAR result. There is tension at low p_T between data and pQCD calculation.

Significantly better precision, leading to a reduction in the uncertainty of R_{AA} measurements in heavy-ion collisions.
In central collisions, significant differences were observed between Au+Au measurements and the scaled FONLL calculation, indicating existence of hot medium effects.

From central to peripheral collisions, the difference decreases. This is consistent with the expectation that peripheral collisions should have smaller QGP effects.

The analysis with Run14 200 GeV Au+Au collisions is ongoing.
In the low p_T region, an enhancement is observed that is consistent with electrons from tagged D^0 decays. The large systematic uncertainties are dominated by that from the $p+p$ reference.

For $p_T > 4$ GeV/c, significant suppression is seen in the most central Au+Au collisions. The suppression decreases gradually toward more peripheral collisions.
NPE Measurements — NPE R_{AA} in 200 GeV Au+Au collisions

- NPE R_{AA} in the 0-5% most central 200 GeV Au+Au and 193 GeV U+U collisions are consistent within uncertainties.

- NPE suppression at high p_T in Au+Au collisions is similar to D^0 mesons and light hadrons in Au+Au collisions as well as NPE and D^0 mesons in U+U collisions.

U+U and Au+Au systems use the same improved Run12 p+p reference

HP2016, Wuhan, Yaping Wang
Prominent correlation signals on both near-side and away-side

PYTHIA 8.1 combined with STAR-HF-Tune Version 1.1 to generate e(D)-h and e(B)-h correlations for 200 GeV p+p collisions

Significant difference on the near-side of correlation distributions between D and B decays due to different decay kinematics
NPE Measurements – Separate D/B-decayed Electrons

- Fit function: \(R \cdot \text{PYTHIA}_B + (1 - R) \cdot \text{PYTHIA}_D \cdot \text{Norm} \)
- \(R \) is B contribution, i.e. \(B/(B+D) \), as a free parameter in fit function.

- \(B \rightarrow e \) contributions in 200 GeV p+p collisions are obtained from NPE-h correlations, and consistent with FONLL calculation.
- Agree with previous STAR analysis for \(p_T < 8.5 \) GeV/c with significantly reduced systematics.
NPE Measurements – Separate D/B-decayed Electrons

\[B \rightarrow e \quad R_{AA} \]

In peripheral collisions, \(B \rightarrow e \quad R_{AA} \) is consistent with no suppression.

In mini. bias and 0-10% central collisions, \(B \rightarrow e \quad R_{AA} \) shows an indication of suppression (\(\sim D^0 \quad R_{AA} \) within large uncertainties).

\[N_{b \rightarrow e} = N_{\text{NPE}} - N_{c \rightarrow e} \]

\(N_{c \rightarrow e} \): extract the charm quark cross-section from the measured \(D^0 \quad p_T \) spectrum by STAR, and decay the charm quarks into electrons through PYTHIA.

Two different functions, i.e. Levy and Power-law, are used to fit \(D^0 \quad p_T \) spectrum, and the difference from these two fits is taken as the uncertainty.
• First application of Monolithic Active Pixel Sensor (MAPS) technology in collider experiments. DCA resolution < 50 µm for Kaons at $p_T = 750$ MeV/c.
• Recorded about 3B Minimum-Bias 200 GeV Au+Au events for D^0, D^\pm, D_s, Λ_c, and 1 nb$^{-1}$ high p_T electron and dimuon samples for $D/B \to e$ and $B \to J/\psi$ studies in 2014 and 2016.
• HFT will allow the separation of B and D decayed electrons for the first time at the STAR experiment using the impact parameter method.
Summary and Outlook

• **NPE cross-section in p+p collisions at √s = 200 GeV**
 (1) Measured over a broad p_T range 0.3-12 GeV/c with significantly improved precision than previous measurements.
 (2) Consistent with pQCD calculation except that there is tension at low p_T.

• **NPE R_{AA} in Au+Au collisions at √s_{NN} = 200 GeV**
 (1) Strong suppression at high p_T in central collisions, which is consistent with substantial energy loss of heavy quarks in dense matter.
 (2) Likely enhancement at low p_T, which is consistent with $D^0 R_{AA}$, suggesting that charm quarks may recombine with light quarks in the medium.
 (3) Consistent results between 0-5% central Au+Au and U+U collisions within uncertainties.

• **Separate D/B-decayed electrons**
 (1) Bottom contribution to NPE is extracted using NPE-h correlations in p+p collisions at √s = 200 GeV with extended p_T range and reduced systematics than previous measurements.
 (2) Looking forward to a separation of charm and bottom contributions to NPE in Au +Au collisions with HFT.
Thanks for your attention!