Nonperturbative Approach to Open Heavy Flavor Transport in Heavey Ion Collisions

Min He (何敏)

Nanjing University of Sci. & Tech.
Work done in collaboration with Ralf Rapp
& Rainer Fries of TAMU

Non-Perturbative HQ Transport Approach

1. Introduction:

Heavy quark probe of hot & dense matter

2. HQ probe: a strongly coupled framework

- Transport coefficient
- HQ diffusion in QGP: Langevin + hydro simulation
- Hadronization: coalescence vs fragmentation
- D-meson diffusion in hadronic phase

3. Heavy ion phenomenology

- RHIC: Non-photonic electrons, Ds vs D mesons
- LHC: D,B mesons, non-photonic electrons
- A new potential & its phenomenological consequences

4. Summary

HQ evolution in HIC

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial (pf)}{\partial p} + D \frac{\partial^2 f}{\partial p^2}$$

thermalization rate

diffusion coefficient

$$\gamma \Box \int |T_{Qq}|^2 (1-\cos\theta) f^q$$
 $D = \gamma m_O T$

$$D = \gamma m_Q T$$

- initial cond. $(pp + N_{coll})$ Cronin, shadowing)

• c-quark Brownian diffusion in QGP liquid (T-matrix resonant correlation,

No K-factor)

- $c + q(s) \rightarrow D(Ds)$ resonance recombination; Ds freezeout
- **D**-meson diffusion in hadron liquid
- --- primordial hard production, pQCD (FONLL/PYTHIA) m_O >> T, Lambda_QCD → number conserved

Non-Perturbative HQ Transport: flow chart

HQ thermal relaxation rate: T-matrix

♦Open/hidden HF: vacuum spectroscopy reproduced; high energy pQCD recovered

Charm quark relaxation rate: QGP

Riek, Huggnis, Rapp, 2010, 2012

- **♦** T-matrix resummation **→** color singlet and anti-triplet broad Feshbach resonances up to ~1.5 T_C
- ♦ this resonance correlation → resonance recombination

- ◆ T-matrix relaxation rate: a factor
 ~4-5 larger than LO pQCD at T=1.2 T_c
- **♦** T-dependence: screening potential; p-dependence: less contribution from Feshbach resonance as p increases

D-meson thermal relaxation rate: HRG

◆ D + pion, K,eta,rho,omega,K*,N,Delta, empirical s-wave cross sections from effective hadronic theory: Lutz et al., 2004; E.Oset et al. 2007

♦ A~0.1 /fm at T=180 MeV, comparable to the non-perturbative T-matrix calculation of charm quark thermal relaxation rate in QGP

Summarizing charm diffusion coeffi.

- ♦ viscosity.: eta/s = (1/5 ~ 1/2)D_sT_j
 Danielewicz&Gyulassy, 1985
- D_s translates into eta/s = (2-5)/4pi at T=180 MeV

- **◆** Ds=T/(mA): T-matrix vs lattice; Minimum around Tc + Quark-hadron duality?!
- **◆**The charm diffusion: another perspective of looking into the transport properties of sQGP/dense matter

Jet quenching q-hat from charm diffusion

- At high T, consistent with emperical values used in Jet models
- At T~T_c, enhanced due to non-perturbative charm diffusion, similar to CUTJET3.0 accounting for non-perturbative chromo-EM quasiparticles Xu, Liao, Gyulassy, 2015

Medium evolution: hydro RHIC

- ◆ updated ideal 2+1 D hydro based on AZHYDRO Kolb + Heinz, 2003
- ♦ lattice/HRG-PCE EoS + pre-equilibrium flow + compact initial density s(x,y) ~ nBC (x,y) \rightarrow fast build-up of radial flow + essential saturation of bulk v_2 around Tc

- lacktriangle multistrange hadrons ϕ, Ξ, Ω probably freeze out earlier STAR, PRC79,2009
- ♦ multi-strange particles' spectra and v_2 fitted at T_{ch} =160 MeV bulk particles' spectra and v_2 fitted at T_{kin} =110 MeV He, Fries,Rapp,2012

HQ diffusion: Langevin equilibrium limit check

Using an arbitrarily large relaxation rate

$$dx_j = \frac{p_j}{E}dt,$$

$$dp_j = -\Gamma(p)p_j dt + \sqrt{2dt \, D(|p + \xi d \, p|)} \rho_j.$$

• Fluctuation-Dissipation theorem: pre- vs post-point scheme He et al. 2013

$$\Gamma(p) = \frac{1}{E(p)} \left(\frac{D[E(p)]}{T} - \frac{\partial D[E(p)]}{\partial E} \right) = A(p) \qquad D[E(p)] = \Gamma(p)E(p)T,$$

$$\Gamma(p) = A(p) + \frac{1}{E(p)} \frac{\partial D[E(p)]}{\partial E}.$$

HQ diffusion: Langevin simulation

Langevin + hydro simulation down to Tc=170 MeV fluid rest frame updates → boost to lab frame

$$dx_{j} = \frac{p_{j}}{E}dt,$$

$$dp_{j} = -\Gamma(p)p_{j}dt + \sqrt{2dt D(|p + \xi dp|)}\rho_{j}.$$

- **♦** initial HQ distribution: PYTHIA/FONLL + Glauber nBC
- quenching: early stage when medium particles' density is high
- \bullet v₂: develops at later stage when the medium particles' v₂ is large

Hadronization: Resonance Recombination

- Hadronization = Resonance formation $c\overline{q} \rightarrow D$
 - → <u>consistent with T-matrix findings of resonance</u> <u>correlations towards T</u>
- Realized by Boltzmann equation Ravagli & Rapp, 2007

$$\begin{split} p^{\mu}\partial_{\mu}f_{M}(t,\vec{x},\vec{p}) &= -m\Gamma f_{M}(t,\vec{x},\vec{p}) + p^{0}\beta(\vec{x},\vec{p}),\\ \beta(\vec{x},\vec{p}) &= \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}}f_{q}(\vec{x},\vec{p}_{1})f_{\bar{q}}(\vec{x},\vec{p}_{2}) & \text{gain term} \\ &\times \sigma(s)v_{\text{rel}}(\vec{p}_{1},\vec{p}_{2})\delta^{3}(\vec{p}-\vec{p}_{1}-\vec{p}_{2}) \\ &\text{Breit-Wigner} & \sigma(s) &= g_{\sigma}\frac{4\pi}{k^{2}}\frac{(\Gamma m)^{2}}{(s-m^{2})+(\Gamma m)^{2}} \end{split}$$

• Equilibrium limit

$$f_M^{\text{eq}}(\vec{p}) = \frac{E_M(\vec{p})}{m\Gamma} \int d^3x \beta(\vec{x}, \vec{p})$$

♦ Energy conservation + detailed balance

equilibrium mapping between quark & meson distributions

Hadronization: Coalescence(RRM)

- RRM coalescence:
- --- 4-mom. conservation, correct thermal equilibrium limit
- --- implemented on hydro freezeout hypersurface with full space-mom. correl.
- --- taking care of the inhomogeneities of the hypersurface: d = 0

- Diffusion vs coalescence: conceptually consistent
- --- same interaction (T-matrix) underlying diffusion + hadronization

Hadronization: Fragmentation (FONLL)

• Fragmentation: incompatible with thermalization

Coalescence vs fragmentation:

Recombination dominates at low p_T but yields to fragmentation at higher p_T

i.e. coal.prob. function $P_{coal}(pt)$: a dropping function of pt

Application & Phenomenology ...

Phenomenology at top RHIC energy

Tuned ideal hydro, FONLL baseline + fragmentation

e ± Spectra @ RHIC

- medium modified D and B mesons:
 c/b diffusion + coal./frag. + hadronic
 diffusion
- semi-leptonic decays $c(b) \rightarrow s(c) + e + nu$

D-meson Hadronic Diffusion

$b \rightarrow e / (b \rightarrow e + c \rightarrow e)$

- Low p_t, c→e dominates, and charm more suppressed than bottom
 above the pp curve
- Higher p_t, b→e takes over, and bottom significantly suppressed
 → below the pp curve

Application & Phenomenology ...

Phenomenology at the LHC Pb-Pb 2.76 TeV

Tuned ideal hydro + FONLL pp baseline + FONLL fragmentations

Hydro tune for the LHC

- lacktriangle p_T-spectra of charged hadrons fine
- \bullet v₂: integrated elliptic flow a good measure of the bulk momentum anisotropy
- **♦** background medium evolution well constrained

LHC D mesons

- $igoplus R_{AA}$: flow bump at low p_T , amplified by coalescence p_T -dependence shape OK; possible missing radiative energy loss at high p_T
- ♦ v₂: c-diffusion only accounts for ~50%
 recombination and hadronic phase diffusion essential

LHC D vs Ds mesons

- lacklosin D vs D_s R_{AA} : low p_T , coalescence enhances D_s production in a strangeness-equilibrated, strongly-coupled QGP medium, relative to pp; high p_T , D & D_s tend to the same universal fragmentation
- lacktriangle D R_{AA} in-plane vs out-of-plane: splitting at low p_T reflects finite v₂ high p_T splitting underestimated, indicative of missing radiative energy loss

ALICE: D vs Ds JHEP03(2016)082

Enhanced Ds-meson R_{AA} tests out interactions at hadronization!

LHC B mesons & non-prompt Jpsi

LHC HF electrons

- $ightharpoonup R_{AA}$: overpredicted in the D dominant region; fairly good in the B dominant region (elastic e-loss only)
- ♦ v₂: marginally hit data, radiative e-loss?

LHC bottom electrons: first data

ALICE: 1609.03898

bottom: a better & cleaner lab for Langevin & elastic e-loss only

No shadowing, flow bump at low pt; high pt suppression

Application & Phenomenology ...

Phenomenology at the LHC Pb-Pb 5.02 TeV

Tuned ideal hydro + FONLL pp baseline + FONLL fragmentations

Hydro tune Pb+Pb 5.02 TeV

- lacktriangle centrality cut: $dN_{ch}/deta$ vs N_{part} nicely reproduced by Glauber
- \bullet v₂: integrated elliptic flow a good measure of the bulk momentum anisotropy
- **♦** background medium evolution well constrained

D mesons

- $igoplus R_{AA}$: charm shadowing & flow bump at low p_T ; suppression at high p_T , a hierarchy patten vs centralities
- v₂: different peak locations due to different radial flows in different centrality different coalescence contribution added on top of charm quark v₂

B mesons

♦ R_{AA}: high p_T --- Similar suppression at as in 2.76 TeV low p_T --- shift toward a bit higher pT due to stronger radial flow

HF muons at forward-y

- $igoplus R_{AA}$: charm shadowing & flow bump at low p_T ; suppression at high p_T , a hierarchy patten vs centralities
- ◆ 5.02 vs 2.76 TeV: a bit more charm shadowing manifest in R_{AA} at low p_T

Step Forward ...

A New HQ potential + phenomenological consequence

Liu, He, Rapp et.al, in preparation

Tuned ideal (hardphoton) hydro + FONLL pp baseline + FONLL fragmentations

A new HQ potential from T-matrix

- \bullet new potential V(r): larger slope than U at medium r & T~1.2T_c
 - \rightarrow larger remnant confining force in medium range $r \sim 1$ fm
- ◆ phenomenological ly: charm quarks couple to more medium particles, relative to short-range force from U/F

Charm thermal relaxation rate

♦p<2.5 GeV & low T<1.5Tc, V results overtake U results due to longer range remnant confining force; high p: tends to pQCD results

♦unique T-dependence: reversed relative to U/F low p: increasing as $T \rightarrow T_c$, help develop large v_{2} ,

high p: increasing with T, pQCD

Phenomenology: Charm quark v₂ and R_{AA}

- ♦ new potential V(r): larger v_2 (which is most efficiently built up near T_c when the background medium v_2 large) → $v_2^c(p_T \approx 2 \text{GeV})$ probes transport coeffi. via intermediate-range confining force
- \bullet At high p_T : less suppression, calling for radiative energy loss ?!

Summary & Outlook

- ----- Summary: nonperturbative open HF interaction & transport
- Conceptual Consistency
 - --- diffusion \leftrightarrow hadronization:
 - based on the same resonant interaction from T-matrix
 - --- diffusion ↔ bulk medium: both based on strongly coupled QGP, non-perturbative
- Application: RHIC & LHC
 - --- dynamical charm flow emerges; successful for low & intermediate p_T

---- Outlook

- New HQ potential
 - --- role of the remnant confining force enphasied
 - --- phenomenologically larger charm v₂ at p_T~2 GeV
- Elastic vs radiative energy loss
 - --- 2-3 radiative T-matrix calculation is going on

Backup: space-time evolution of HIC

Backup: Heavy quarks

Backup: HQ probes

- primordial hard production + number conserved

thermalization delayed
$$\tau_Q \approx \frac{m_Q}{T} \tau_q \approx 6 * \tau_q \geq \tau_{QGP}$$

- → Heavy quarks make a direct probe of
- the medium HO diffusion in QGP: elastic scatterings with medium

Hot/Dense Medium c quark Momentum Kicks

Brownian motion: Fokker-Planck Equation

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial (pf)}{\partial p} + D \frac{\partial^2 f}{\partial p^2}$$

$$\gamma \Box \int |T_{Qq}|^2 (1-\cos\theta)f^q$$

diffusion coefficient

$$D = \gamma m_Q T$$

Au-Au 62.4 GeV Compare Rcp by Duke

rig. 19: (color online) Heavy flavor electron R_{CP} between centrality 0%–20% and 40%–60% in Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV. The curves are calculated using a model based on energy loss [48].

Au-Au 62.4 GeV HF electrons v2

- ◆ No discrepancies can be made out, albeit within rather large error bars in data
- 0-60% centrality v_2 : from a N_{coll} -weighted average of v_2 's of the 0-20%, 20-40% and 40-60% centrality bins

Charm/bottom quark coal.prob.

Charm quark FONLL vs Peterson frag.

Bottom quark FONLL vs Peterson frag.

Energy-momentum tensor anisotropy

Backup 1: charm quark Langevin diffusion equilibrium

Backup 2: D-meson RRM equilibrium

Backup 3: D-meson hadronic phase Langevin diffuison equilibrium

RHIC b/B \rightarrow e vs c/D \rightarrow e

- Bottom less suppression, less collectivity than charm: mass effect
- Now HFT@STAR able to disentangle charm vs bottom lectrons, time to compare the prediction with data

Backup 4: fully thermalized D mesons@LHC

Jet quenching q-hat from charm diffusion

