

Jet and Leading Hadron Production in d+Au Collisions in the PHENIX Experiment

Takao Sakaguchi Brookhaven National Laboratory for the PHENIX collaboration

Leading Hadron Production in d+Au and ³He+Au Collisions in the PHENIX Experiment

Takao Sakaguchi Brookhaven National Laboratory for the PHENIX collaboration

Why <u>were</u> we interested in *d*+Au collisions?

- To confirm the high p_T hadron suppression is due to final state effects, and not cold nuclear matter (CNM) effects
 - Needed system without additional effects from a hot medium.
- CNM effects include:
 - k_T-broadening
 - Shadowing of parton distributions
 - Cold nuclear matter energy loss
 - And possibly more...
- *d*+Au was more favorable for RHIC operation because of better rigidity match
 - p+Au became feasible later

PHENIX, PRC82, 011902(R) (2010)

Direct photons / Jets in minbias d+Au

- Direct photon R_{dA} is consistent with unity up to 16GeV/c
 - No modification in initial hard scattering
- Jets R_{dA} is consistent with unity up to 50 GeV/c
 - As expected from PDF (EPS09), no final state effect.
- Both are as expected.

Centrality dependence is unexpected

- Jets R_{dA} shows a sizable centrality dependence
 - Suppression in most central, enhancement in most peripheral
- Strong flow like A+A is seen in most central *d*+Au collisions
 - Similar observation by the LHC experiments
 - We didn't anticipate "flow" in a small system like p/d+A

p/d+Au is no longer a baseline or a simple system...

- Mini-QGP production?
 - Initial state effects, e.g. CGC, will affect to production cross-section of particles
 - Final state effects, e.g. hydrodynamics will produce flow-like structure

p/d+Au is no longer a baseline or a simple system...

- Mini-QGP production?
 - Initial state effects, e.g. CGC, will affect to production cross-section of particles
 - Final state effects, e.g. hydrodynamics will produce flow-like structure
- If there is QGP, detail investigation of the interaction of partons with the medium will give insight on its characteristics
- Systematic study of the leading hadron spectra in p/d/³He+A will help

PHENIX Detector and analysis

- We analyzed ³He+Au events recorded in RHIC Year-14 run.
- π^0 are reconstructed via $\pi^0 \rightarrow 2\gamma$ channel
 - Use of EM Calorimeter (EMCal, PbSc) for photon ID and energy measurement
- Events used this analysis are triggered by:
 - Beam-beam counter (BBC) as minimum bias events: <u>2.0×10⁹ evts</u>
 - EMCal and BBC coincidence trigger (ERT): <u>4.5×10¹⁰ MinBias-equiv. evts</u>
 - Total analyzed luminosity: 22 nb⁻¹

Event trigger and bias

- Min. Bias trigger has inefficiency
 - Inefficiency is already studied in *d*+Au collisions in detail.
 - BBC charge distribution was compared with a Glauber Monte Carlo simulation folded with a negative binomial distribution (NBD)
- Efficiencies for d+Au and ³He+Au are both determined as <u>88%</u>.
- Bias factors (BF) for centrality selection are calculated
 - Bias is from auto-correlation between particles in mid- and backward rapidity
 - Same method as *d*+Au case is applied and calculated as in the following table

Cent (%)	0-20	20-40	40-60	60-88	0-100
<i>d</i> +Au BF	0.94	1.00	1.03	1.03	0.89
³ He+Au BF	0.95	1.02	1.02	1.03	0.89

T. Sakaguchi, HP2016@Wuhan, China

$\pi^0 p_T$ spectra in ³He+Au collisions

• p_T spectra have been measured up to p_T =20GeV for minimum bias events as well as for four centrality classes

$\pi^0 R_{AA}$ in ³He+Au collisions

- R_{AA} has been measured and compared with d+Au collision data
- Both absolute magnitudes and \textbf{p}_{T} dependence are consistent within quoted uncertainties

2016-09-24

T. Sakaguchi, HP2016@Wuhan, China

PH※ENIX

π^0 integrated R_{AA} in ³He+Au collisions

- Integrated R_{AA} has been plotted with ones in *d*+Au
- At higher N_{part} , *d*+Au and ³He+Au show very similar N_{part} dependence
- At lower N_{part}, *d*+Au collisions show more enhancement
 - More Cronin effect, or less suppression (energy loss)

π^0 integrated R_{AA} in ³He+Au collisions

- Integrated R_{AA} has been plotted with ones in *d*+Au and <u>Au+Au</u>
- R_{AA} from all three systems converge for N_{part}>~12
 Similar degree of suppression suggesting similar bet matter is
 - Similar degree of suppression suggesting similar <u>hot</u> matter is produced?
- System ordering of R_{AA} is seen for N_{part} <12
 - R_{dAu} > R_{HeAu} > R_{AuAu} . Of course, better precision is desired

Fractional momentum loss in ³He+Au

- Let's convert R_{AA} to fractional momentum loss ($\delta p_T/p_T$).
 - One can directly measure the spectra shift (δp_T)
- 0-20% ³He+Au collisions shows similar R_{AA} as 60-70% Au+Au
 - At the same cms energy, the same R_{AA} implies the same $\delta p_T/p_T$
- $\delta p_T / p_T = \sim 0.03$ in most central ³He+Au collisions

 $p_T: p_T(p+p) \qquad \delta p_T = p_T(p+p) - p_T(A+A)$

PHENIX, PRC93, 024911 (2016)

TABLE IV. Centrality dependence of $\delta p_T / p_T^{pp}$ in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV from 2007 data from the PHENIX experiment at RHIC.

	2007 data				
Centrality	p_T^{pp} [GeV/c]	$\delta p_T / p_T^{pp}$	Stat error	Syst error	
60–70%	7.0	0.028	+0.004 -0.004	+0.019 -0.017	
	10.0	0.011	+0.021 -0.019	$^{+0.028}_{-0.024}$	
	12.0	0.037	+0.025 -0.022	$+0.046 \\ -0.037$	

T. Sakaguchi, HP2016@Wuhan, China

Summary

- *p/d*+Au system is no longer a baseline or a simple system.
 - Sizable particle flow (v_2) has been seen in the most central *d*+Au collisions
 - Jet R_{AA} shows anomalous centrality dependence (suppression/enhancement)
- It is important to measure the spectra/R_{AA} systematically in small systems, i.e., p+A, d+A and ³He+A
- π⁰ have been measured in 200GeV ³He+Au collisions for the first time.
 R_{AA} looks very similar to the ones in *d*+Au.
- Integrated R_{AA} from d+Au, ³He+Au and Au+Au merge at N_{part} >~12.
 - Similar degree of suppression suggesting similar <u>hot</u> matter is produced?
 - System ordering of R_{AA} is seen for N_{part} <12, i.e., R_{dAu} > R_{HeAu} > R_{AuAu} .
- Fractional momentum loss $(\delta p_T/p_T)$ is ~0.03 for 0-20% ³He+Au collisions
 - From the $\delta p_T/p_T$ in 60-70% Au+Au collisions at the same cms energy

Hard Probes 2016 8th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Backup

2016-09-24

T. Sakaguchi, HP2016@Wuhan, China

Comparing with new collision systems

Ridge-like structure is observed in d+Au

PHENIX, PRL114, 192301 (2015)

- h^{+/-} MPC south correlation
 functions in central d+Au
 and minbias p+p collisions
 - Au-going direction
- Near-side peak clearly seen in d+Au but not in p+p
- Analyze correlation functions with Fourier fits
- 2nd order component (c₂) increases as p_T becomes larger
- Similar correlation but the smaller strength is seen in h^{+/-} - MPC north correlation

Ridge evolution in π^0 -MPC south / Au-going...

