Jet and Leading Hadron Production in d+Au Collisions in the PHENIX Experiment

Takao Sakaguchi
Brookhaven National Laboratory
for the PHENIX collaboration
Leading Hadron Production in d+Au and 3He+Au Collisions in the PHENIX Experiment

Takao Sakaguchi
Brookhaven National Laboratory
for the PHENIX collaboration
Why \textit{were} we interested in $d+Au$ collisions?

- To confirm the high p_T hadron suppression is due to final state effects, and not cold nuclear matter (CNM) effects
 - Needed system without additional effects from a hot medium.

- CNM effects include:
 - k_T-broadening
 - Shadowing of parton distributions
 - Cold nuclear matter energy loss
 - And possibly more…

- $d+Au$ was more favorable for RHIC operation because of better rigidity match
 - $p+Au$ became feasible later
Direct photons / Jets in minbias $d+Au$

- Direct photon R_{dA} is consistent with unity up to 16 GeV/c
 - No modification in initial hard scattering

- Jets R_{dA} is consistent with unity up to 50 GeV/c
 - As expected from PDF (EPS09), no final state effect.

- Both are as expected.

PRC87, 054907 (2013)

PRL 116, 1223011 (2016)
Centrality dependence is unexpected

- Jets R_{dA} shows a sizable centrality dependence
 - Suppression in most central, enhancement in most peripheral

- Strong flow like A+A is seen in most central d+Au collisions
 - Similar observation by the LHC experiments
 - We didn’t anticipate “flow” in a small system like p/d+A

PRL 116, 1223011 (2016)

PRL 114, 192301 (2015)
p/d+Au is no longer a baseline or a simple system...

- Mini-QGP production?
 - Initial state effects, e.g. CGC, will affect to production cross-section of particles
 - Final state effects, e.g. hydrodynamics will produce flow-like structure
p/d+Au is no longer a baseline or a simple system...

- Mini-QGP production?
 - Initial state effects, e.g. CGC, will affect to production cross-section of particles
 - Final state effects, e.g. hydrodynamics will produce flow-like structure

- If there is QGP, detail investigation of the interaction of partons with the medium will give insight on its characteristics

- Systematic study of the leading hadron spectra in p/d/³He+A will help
PHENIX Detector and analysis

- We analyzed 3He+Au events recorded in RHIC Year-14 run.

- π^0 are reconstructed via $\pi^0 \rightarrow 2\gamma$ channel
 - Use of EM Calorimeter (EMCal, PbSc) for photon ID and energy measurement

- Events used this analysis are triggered by:
 - Beam-beam counter (BBC) as minimum bias events: 2.0×10^{9} evts
 - EMCal and BBC coincidence trigger (ERT): 4.5×10^{10} MinBias-equiv. evts
 - Total analyzed luminosity: 22 nb$^{-1}$
Event trigger and bias

- Min. Bias trigger has inefficiency
 - Inefficiency is already studied in \(d+Au\) collisions in detail.
 - BBC charge distribution was compared with a Glauber Monte Carlo simulation folded with a negative binomial distribution (NBD)

- Efficiencies for \(d+Au\) and \(^3He+Au\) are both determined as 88%.

- Bias factors (BF) for centrality selection are calculated
 - Bias is from auto-correlation between particles in mid- and backward rapidity
 - Same method as \(d+Au\) case is applied and calculated as in the following table

<table>
<thead>
<tr>
<th>Cent (%)</th>
<th>0-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-88</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d+Au) BF</td>
<td>0.94</td>
<td>1.00</td>
<td>1.03</td>
<td>1.03</td>
<td>0.89</td>
</tr>
<tr>
<td>(^3He+Au) BF</td>
<td>0.95</td>
<td>1.02</td>
<td>1.02</td>
<td>1.03</td>
<td>0.89</td>
</tr>
</tbody>
</table>
\(\pi^0 \) \(p_T \) spectra in \({}^3\text{He}+\text{Au} \) collisions

- \(p_T \) spectra have been measured up to \(p_T = 20 \) GeV for minimum bias events as well as for four centrality classes.
$\pi^0 R_{AA}$ in 3He+Au collisions

- R_{AA} has been measured and compared with d+Au collision data.
- Both absolute magnitudes and p_T dependence are consistent within quoted uncertainties.

![Graph showing R_{AA} vs. p_T for $\pi^0 + X, \sqrt{s_{NN}} = 200$ GeV.]
π^0 R_{AA} for various centralities

$\pi^0 + X, \sqrt{s_{NN}} = 200 \text{ GeV}$

0-20%

R_{AA}

$PHENIX$
preliminary

3He+Au $\langle N_{\text{coll}} \rangle = 22.3$

d+Au $\langle N_{\text{coll}} \rangle = 15.37$ Phys. Rev. Lett. 98, 172302

20-40%

R_{AA}

$PHENIX$
preliminary

3He+Au $\langle N_{\text{coll}} \rangle = 14.8$

d+Au $\langle N_{\text{coll}} \rangle = 10.63$ Phys. Rev. Lett. 98, 172302

40-60%

R_{AA}

$PHENIX$
preliminary

3He+Au $\langle N_{\text{coll}} \rangle = 8.4$

d+Au $\langle N_{\text{coll}} \rangle = 6.95$ Phys. Rev. Lett. 98, 172302

60-88%

R_{AA}

$PHENIX$
preliminary

3He+Au $\langle N_{\text{coll}} \rangle = 3.4$

d+Au $\langle N_{\text{coll}} \rangle = 3.07$ Phys. Rev. Lett. 98, 172302

p_T [GeV/c]
\(\pi^0 \) integrated \(R_{AA} \) in \(^3\text{He}+\text{Au} \) collisions

- Integrated \(R_{AA} \) has been plotted with ones in \(d+\text{Au} \)
- At higher \(N_{\text{part}} \), \(d+\text{Au} \) and \(^3\text{He}+\text{Au} \) show very similar \(N_{\text{part}} \) dependence
- At lower \(N_{\text{part}} \), \(d+\text{Au} \) collisions show more enhancement
 - More Cronin effect, or less suppression (energy loss)
\(\pi^0 \) integrated \(R_{AA} \) in \(^3\text{He}+\text{Au} \) collisions

- Integrated \(R_{AA} \) has been plotted with ones in \(d+\text{Au} \) and \textbf{Au+Au}

- \(R_{AA} \) from all three systems converge for \(N_{\text{part}} \gtrsim 12 \)
 - Similar degree of suppression suggesting similar \textit{hot} matter is produced?

- System ordering of \(R_{AA} \) is seen for \(N_{\text{part}} < 12 \)
 - \(R_{d\text{Au}} > R_{\text{HeAu}} > R_{\text{AuAu}} \). Of course, better precision is desired

\[\pi^0 + X, \sqrt{s_{NN}} = 200 \text{ GeV} \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{plot.png}
\caption{Au+Au points (hand drawing: 80-93, 70-80, 60-70\%)}
\end{figure}

\textbf{PRC87, 034911(2013)}
Fractional momentum loss in $^3\text{He}+\text{Au}$

- Let’s convert R_{AA} to fractional momentum loss ($\delta p_T/p_T$).
 - One can directly measure the spectra shift (δp_T)

- 0-20% $^3\text{He}+\text{Au}$ collisions shows similar R_{AA} as 60-70% Au+Au
 - At the same cms energy, the same R_{AA} implies the same $\delta p_T/p_T$

- $\delta p_T/p_T = \sim 0.03$ in most central $^3\text{He}+\text{Au}$ collisions

$\delta p_T = p_T(p + p) - p_T(A + A)$

PHENIX, PRC93, 024911 (2016)

<table>
<thead>
<tr>
<th>Centrality</th>
<th>p_T^{pp} [GeV/c]</th>
<th>$\delta p_T/p_T^{pp}$</th>
<th>Stat error</th>
<th>Syst error</th>
</tr>
</thead>
<tbody>
<tr>
<td>60–70%</td>
<td>7.0</td>
<td>0.028</td>
<td>$+0.004$</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.011</td>
<td>$+0.021$</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>0.037</td>
<td>$+0.025$</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

TABLE IV. Centrality dependence of $\delta p_T/p_T^{pp}$ in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV from 2007 data from the PHENIX experiment at RHIC.
Summary

- $p/d+Au$ system is no longer a baseline or a simple system.
 - Sizable particle flow (v_2) has been seen in the most central $d+Au$ collisions
 - Jet R_{AA} shows anomalous centrality dependence (suppression/enhancement)

- It is important to measure the spectra R_{AA} systematically in small systems, i.e., $p+A$, $d+A$ and ^3He+A

- π^0 have been measured in 200GeV ^3He+Au collisions for the first time.
 - R_{AA} looks very similar to the ones in $d+Au$.

- Integrated R_{AA} from $d+Au$, ^3He+Au and $Au+Au$ merge at $N_{part}>\sim12$.
 - Similar degree of suppression suggesting similar hot matter is produced?
 - System ordering of R_{AA} is seen for $N_{part}<12$, i.e., $R_{dAu}>R_{HeAu}>R_{AuAu}$.

- Fractional momentum loss ($\delta p_T/p_T$) is ~0.03 for 0-20% ^3He+Au collisions
 - From the $\delta p_T/p_T$ in 60-70% $Au+Au$ collisions at the same cms energy
Backup
Comparing with new collision systems

V_2

- 3He+Au 200GeV 0-5%, arXiv:1507.06273
- d+Au 200GeV 0-5%, PRL. 114, 192301
- p+Au 200GeV 0-5%
- SONIC 3He+Au
- SONIC d+Au
- SONIC p+Au

arXiv:1502.04745

Pointer to Itaru and Shengli’s talk, Seyoung’s poster.
Ridge-like structure is observed in d+Au

- $h^{+/−}$ - MPC south correlation functions in central d+Au and minbias p+p collisions
 - Au-going direction

Near-side peak clearly seen in d+Au but not in p+p

- Analyze correlation functions with Fourier fits

- 2nd order component (c_2) increases as p_T becomes larger

- Similar correlation but the smaller strength is seen in $h^{+/−}$ - MPC north correlation
Ridge evolution in π^0--MPC south / Au-going…

- $-c_2 / c_1$ from π^0--MPC south correlations
 - Au-going direction
 - Assuming c_1 is a proxy of jets or global momentum conservation

- Measure shape evolution by relative magnitude of 2nd order component

- $-c_2 / c_1 > 0.25$ corresponds to near-side local maximum (if $c_3 = c_4 = 0$)