Hard Probes 2016

8th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

September 23–27, 2016 · Wuhan, China

Effect of collisional energy loss on particle correlations in AMPT

Fuqiang Wang

Purdue University, Huzhou University

Based on Terrence Edmonds, Qingfeng Li, FW, arXiv:1609.06222 [nucl-th]

Jet quenching

- Theoretical:
 - Partonic energy loss in medium
 - Radiative and collisional energy loss
 - Perturbative QCD at high p_T.
 Non-perturbative effects difficult to calculate.
- Experimental:
 - Suppression of high p_T particles
 - Jet structure modification

Collisional energy loss

• Theoretical calculations focus on energy loss

 Effects of collisional energy loss on correlations less explored

 This talk focuses on effects on correlations using transport model AMPT

A Multi-Phase Transport (AMPT)

- Initial condition from HIJING
- Jets are destroyed, no dijet correlations
- String fragmentation
- No radiative energy loss, only collisional

- Coalescence
- This talk focuses on only partons

Collisional energy loss

Probe parton angle deflection

Trigger-assoc. $\Delta \phi$ width vs p_T^{assoc}

The lower the p_T , the larger angle kick

Trigger-assoc. $\Delta \phi$ width vs N_{coll}

RP dependent $\Delta \phi$ **broadening**

Orientations relative to medium flow

Fuqiang Wang

Hard Probes 2016, CCNU, Wuhan, China

Collisional broadening

Summary

- Effects of collisional energy loss on jetlike correlations are studied using AMPT
- Broadening increases with N_{coll} and from in-plane to out-of-plane
- Effect of relative orientations between probe parton and medium flow clearly seen in AMPT, but maybe experimentally hard to detect.
- Useful benchmark in the study of jet-medium interactions

Longitudinal flow effect

