

Charmonium production in Pb-Pb collisions measured by ALICE at the LHC

Hard Probes 2016 Victor Feuillard, CEA Saclay, for the ALICE Collaboration

24 September 2016

Victor Feuillard - Hard Probes 2016

Outline

- I. Introduction
 - I. Physics motivation
 - II. The ALICE detector
- II. Previous results in Pb-Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- III. New Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV results
 - I. Inclusive J/ ψR_{AA}
 - II. Comparison with models
- IV. Conclusion

Introduction

- Quark-Gluon Plasma (QGP) is a state of matter predicted by QCD where quark and gluons are deconfined
- Transition temperature : T_c ≈ 155 MeV (Phys. Rev. D 85 (2012) 054503)
- It is the state of matter at the early stages of the universe (τ≈1µs)

 It is possible to recreate the QGP by doing relativistic heavy-ion collisions, but only during a short period of time (≈10 fm/c at LHC) and a very small volume (≈ 10⁴ fm³ at LHC) (Phys.Lett. B696 (2011) 328-337)

Introduction – Charmonia

- Charmonia $(J/\psi, \psi(2S))$ are bound states of a c-cbar pair
- Theory predicts that charmonia are dissociated in a QGP because of the colour screening (Phys. Lett. B 178 (1986) 416)
- Difference between binding energies leads to a sequential melting of charmonia as function of temperature
- If there are enough charm-anticharm pairs, and if thermalized in QGP:
 →quarkonia regeneration (Phys. Lett. B 490 (2000) 196)

Introduction - ALICE

• ALICE : 41 countries, 159 institutes, 1665 members

- Muon Arm : J/ψ-> μ⁺μ⁻
- Acceptance : 2.5<y<4.0
- Down to $p_{\rm T}$ = 0
- 5 stations of tracking chambers
- 2 stations of trigger chambers
- Dipole Magnet
- Absorbers

With the Muon spectrometer, we only measure inclusive J/ψ (prompt and non-prompt J/ψ)

Introduction - ALICE

• ALICE : 41 countries, 159 institutes, 1665 members

• ITS used for vertex determination

- V0 hodoscopes used as trigger (in coincidence with Muon Trigger)
- V0 and ZDC used for background rejection
- T0 Cerenkov detectors used for luminosity calculations

Introduction - ALICE

• ALICE : 41 countries, 159 institutes, 1665 members

- Central Barrel: $J/\psi \rightarrow e^+e^-$
- Acceptance : |y|<0.9
- Down to $p_{\rm T} = 0$
- Electrons tracked with ITS and TPC
- Particle identification with TPC and TOF

Run 1 Results - J/ ψ inclusive R_{AA} at 2.76 TeV

• Nuclear modification factor :

$$R_{AA} = \frac{Y_{PbPb}}{N_{coll}.Y_{pp}}$$

- If $R_{AA} \neq 1$, then there are nuclear effects
- Centrality : Related to the transverse distance b between the center of the colliding nuclei
- Also expressed in terms of $\langle N_{part} \rangle$, $\langle N_{coll} \rangle$ or $\langle T_{AA} \rangle$
- Clear suppression of the J/ ψ both at ALICE and PHENIX
- Smaller suppression for central events in ALICE
 - \rightarrow indication of regeneration

$\sqrt{S_{NN}} = 5.02 \text{ TEV RESULTS}$: MEASUREMENT OF R_{AA}

Event and Track Selection

- Results from Run 2, december 2015
- Integrated Luminosity $\approx 225 \ \mu b^{-1}$
- Muon pair selection :
 - Pseudo rapidity on each muon -4.0<η<-2.5
 - Radial transverse position at the end of the absorber $17.6 < R_{abs} < 89.5$ cm
 - Rapidity of the dimuon 2.5<y<4.0
 - Muons of opposite sign
 - Matching tracks between tracking chambers and trigger
- Event selection
 - Beam gas and electromagnetic interactions rejected using V0 and ZDC
 - SPD used for vertex determination
- Centrality estimated on a Glauber model fit of the V0 amplitude (PRL. 116 (2016) 222302)

ALICE, ALICE-PUBLIC-2015-008

Signal extraction

- J/ψ yield extracted by fitting the opposite sign dimuon invariant mass spectrum
- The signal is extracted using :
 - 2 signal functions
 - 2 methods of dealing with the background : empirical fit or mixed-event background substraction
 - Several fit ranges

• $N_{J/\psi} \approx 277000$ (7 times larger than in Run 1)

pp cross section at $\sqrt{s} = 5.02$ TeV

$$\sigma_{J/\Psi}^{pp} = \frac{N_{J/\Psi}}{A.\varepsilon \times L \times BR_{J/\Psi \to \mu^{+}\mu^{-}}}$$

- Data collected during 4 days before the Pb-Pb collisions
- Total luminosity of 106 nb⁻¹
- Integrated cross section (p_T < 12 GeV/c) : 5.61 ± 0.08 (stat) ± 0.28 (syst) μb

Other contributions to R_{AA}

$$R_{AA} = \frac{N_{J/\Psi}}{BR_{J/\Psi \to \mu^+ \mu^-} . N_{MB} . A\varepsilon . \langle T_{AA} \rangle . \sigma_{J/\Psi}^{pp}}$$

- $A\varepsilon$: Acceptance-efficiency, correcting the number of extracted particles by the acceptance and efficiency of the detector, calculated with Monte-Carlo simulations using the embedding technique
- $BR_{J/\Psi \rightarrow \mu^+ \mu^-}$: Branching ratio
- N_{MB} : Number of equivalent minimum bias events
- $\langle T_{AA} \rangle$: Nuclear overlap function, calculated using a Glauber model

→ Each one of these elements is a source of systematic uncertainty. The total amount of systematic uncertainty is about 8% for the R_{AA}

R_{AA} vs Centrality

- Higher statistics with respect to Run 1 allows finer bins
- Clear J/ ψ suppression with almost no centrality dependence for N_{part} >100
- If R_{AA} (non-prompt) = 0, then R_{AA} (prompt) would be 10% higher
- If R_{AA} (non-prompt) = 1, then R_{AA} (prompt) would be 5% to 1% lower

At $Vs_{NN} = 5.02 \text{TeV}$, $R_{AA}^{0.90\%}(0 < p_T < 8 \text{ GeV}/c) = 0.66 \pm 0.01(\text{stat.}) \pm 0.05$ (syst.) At $Vs_{NN} = 2.76 \text{TeV}$, $R_{AA}^{0.90\%}(0 < p_T < 8 \text{ GeV}/c) = 0.58 \pm 0.01(\text{stat.}) \pm 0.09$ (syst.)

 $R_{AA}^{0-90\%}(5.02 \text{ TeV})/R_{AA}^{0-90\%}(2.76 \text{ TeV}) = 1.13 \pm 0.02(\text{stat.}) \pm 0.18 (\text{syst.})$ Results at 2.76 TeV and 5.02 TeV are compatible within uncertainties

Victor Feuillard - Hard Probes 2016

R_{AA} vs Centrality

- In peripheral Pb-Pb collisions, we observed R_{AA} >1
- It is explained by an excess of J/ψ at very low p_T
- Photoproduction of J/ψ in Pb-Pb collisions with b<2R was proposed to be at the origin of this excess.
 (ALICE, PRL 116 (2016) 222301)
- The cut $p_T > 0.3$ GeV/c removes about 80% of photoproduced J/ ψ -> better suited to compare with models

Statistical Hadronization Model (SHM):

Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

- Primordial charmonia are completely suppressed in the QGP
- Charmonium production occurs at phase boundary by the statistical hadronization of charm quarks

Statistical Hadronization Model (SHM):

Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

- Primordial charmonia are completely suppressed in the QGP
- Charmonium production occurs at phase boundary by the statistical hadronization of charm quarks

• Comover Interaction Model (CIM) :

Ferreiro, Phys. Lett. B 731 (2014) 57

- Dissociation occurs by interaction with a dense co-moving partonic medium
- Regeneration is added as a gain term to the comover dissociation

Statistical Hadronization Model (SHM):

Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

- Primordial charmonia are completely suppressed in the QGP
- Charmonium production occurs at phase boundary by the statistical hadronization of charm quarks

• Comover Interaction Model (CIM) : Ferreiro, Phys. Lett. B 731 (2014) 57

- Dissociation occurs by interaction with a dense co-moving partonic medium
- Regeneration is added as a gain term to the comover dissociation

Transport Models (TM) : Du and Rapp, Nucl. Phys. A 859 (2011) 114-125

 Continuous charmonium dissociation/ regeneration in the QGP, described by a rate equation

Statistical Hadronization Model (SHM):

Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

- Primordial charmonia are completely suppressed in the QGP
- Charmonium production occurs at phase boundary by the statistical hadronization of charm quarks

• Comover Interaction Model (CIM) : Ferreiro, Phys. Lett. B 731 (2014) 57

- Dissociation occurs by interaction with a dense co-moving partonic medium
- Regeneration is added as a gain term to the comover dissociation

Transport Models (TM) : Du and Rapp, Nucl. Phys. A 859 (2011) 114-125 Zhou et al., Phys. Rev C 89 no.5, 459 (2014) 054911

 Continuous charmonium dissociation/ regeneration in the QGP, described by a rate equation

- Large uncertainties are mainly due to the choice of $\sigma_{c\bar{c}}$ and cold nuclear matter effects
- For transport and comovers models, a better agreement is found with the upper limits
- For transport models it corresponds to an absence of nuclear shadowing
- Nuclear shadowing is a cold nuclear matter effect observed among others by ALICE in p-Pb collisions
- An absence of nuclear shadowing is an extreme assumption
- Each of the model uses a different $\sigma_{c\overline{c}}$: difficult to rule out some of the models

- By doing the double ratio, some of the uncertainties of the models cancel out
- The uncertainty on the *T*_{AA} also cancels
- The uncertainty bands in the models correspond to a 5% variation on $\sigma_{c\bar{c}}$
- When considering the non-prompt contribution, the double ratio varies within 2%
- The double ratio for central collisions (0-10%) is 1.17 ± 0.04(stat.) ± 0.20(syst.)
- Data are compatible with the theoretical models within uncertainties.
- No clear centrality dependence of the ratio.

Comparison to Models vs p_{T}

- R_{AA} calculation is extended to $p_T = 12$ GeV/c
- We observe less suppression at low *p*_T, as expected from models with a strong regeneration component
- Hint of an increase of the R_{AA} with respect to $\sqrt{s_{NN}} = 2.76$ TeV is observed between 2 and 6 GeV/c

Conclusion

- The J/ ψ cross section in pp collisions at Vs = 5.02 TeV has been measured both versus p_T and integrated, and the results are used as reference for the R_{AA} calculation
- The inclusive nuclear modification factor of the J/ ψ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at forward rapidity has been measured down to $p_T = 0$
- The p_{T} range of the R_{AA} has been extended up to 12 GeV/c
- The centrality and p_{T} dependence of the R_{AA} have been studied and show :
 - An increase of the J/ ψ suppression up to $N_{\text{part}} = 100$ followed by a plateau
 - An increase of the J/ ψ suppression at high p_T with respect to low p_T
- The comparison with the 2.76 TeV results shows :
 - Results are compatible within uncertainties in the full centrality range
 - A hint of an increase with colliding energy for R_{AA} as a function of p_T for $2 < p_T < 6$ GeV/c
- These results are compatible within uncertainties with theoretical models and support a picture of J/ ψ suppression and regeneration competing in the QGP

Perspectives

- Expected R_{AA} results for J/ ψ at mid-rapidity
- Measurement of the R_{AA} for the $\psi(2S)$ is ongoing
- Measurement of the J/ ψ elliptic flow also ongoing
- ➔ This should help discriminate between models

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

BACK-UP

Low-p_T excess

- Excess of J/Psi at very low pT is observed in peripheral PbPb collisions
- Photoproduction of J/ ψ in Pb-Pb collisions with b < 2R was proposed to be at the origin of this excess. The cut pT > 0.3 GeV/c removes ~75% of photoproduced J/ ψ

Elliptic Flow

- Hint of a J/ ψ flow measured by ALICE while v2 compatible with zero at RHIC
- Agreement within uncertainties between data and transport model with regeneration

Summary of the systematic uncertainties for PbPb at 5TeV

Source	0-90% ; p _T <12 GeV/ c	р _т (0-20%)	centrality
Signal extraction	1.8%	1.2% - 3.1%	1.6% - 2.8%
MC input	2.0%	2.0%	2%*
Tracking eff	3.0%	3.0%	3%*
Trigger eff	3.6%	1.5% - 4.8%	3.6%*
Matching eff	1%	1%	1%*
F _{Norm}	0.5%	0.5%*	0.5%*
T _{AA}	3.2%	3.2%*	3.1% - 7.6%
Centrality limits	0%	0.1%*	0-6.6%
Sigma pp	5.0%	3% - 10% + 2.1%*	5.2%*

Summary of the systematic uncertainties for pp at 5TeV

Source	0 <p<sub>T<12 GeV/c</p<sub>	р _т
Signal extraction	3%	1.5% - 9.3%
MC input	2.0%	0.7% - 1.5%
Tracking eff	1.0%	1.0%
Trigger eff	1.8%	1.5% - 1.8%
Matching eff	1%	1%
Luminosity	2.1%	2.1%*

Model parameters

Model	$\sigma_{ccbarre}$	N-N $\sigma_{J/\psi}$	Comover $\sigma_{_{J/\psi}}$	Shadowing
TM1	0.57 mb	3.14 µb	-	EPS09
TM2	0.82 mb	3.5 μb	-	EPS09
statistical	0.45 mb	-	-	EPS09
Comovers	[0.45 ; 0.7]	3.53 μb	0.65 mb	Glauber-Gribov Theory