J/ψ and ψ(2S) production in pp and PbPb collisions at 5.02 TeV with ATLAS

Sebastian Tapia Araya, for the ATLAS Collaboration

8th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions
Why measure the Quarkonia:

Charmonia bound states of c and c\(^-\) quarks, could be a unique probe to study the hot, dense system created in nucleus-nucleus (A+A) collisions.

T. Matsui and H. Satz PLB 178 (1986) 416

However, the full picture is much more complicated

- Color-Screening: melting
- Color-exchange: absorption
- Medium induced energy loss
- Regeneration via statistical recombination
- Feed-Down of excited charmonium states and B-hadrons
Method

Reconstructed dimuons in Invariant Mass $2.6 < M_{\mu\mu} < 4.2$ GeV

Trigger PbPb
- L1 Trigger: Single MU4 (PbPb)
- High Level Trigger: 2 muons, $p_T > 4$ GeV

Trigger pp
- L1 Trigger: Double MU4
- High Level Trigger: 2 muons, $p_T > 4$ GeV

Measurements of prompt and non-prompt J/ψ and $\psi(2S)$
Kinematic Range: $9 < p_T < 40$ GeV and $|y| < 2$, centrality 0-80%
Perform weighted 2D unbinned maximum likelihood fit
- dimuon Invariant mass and lifetime
- Per-dimuon weight: trigger and reconstruction efficiency; acceptance
- Parametrize signal, background and non-prompt fraction
Simultaneous Fit Method

pp projections

pseudo-proper decay time

\[\tau = \frac{L_{xy} m_{\mu\mu}}{p_T} \]

\(L_{xy} \) = projection of decay length on the transverse plane

<table>
<thead>
<tr>
<th>i</th>
<th>Type</th>
<th>Source</th>
<th>(f_i(m))</th>
<th>(h_i(\tau))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(J/\psi) S</td>
<td>P</td>
<td>(\omega_i CB_1(m) + (1 - \omega_i) G_1(m))</td>
<td>(\delta(\tau))</td>
</tr>
<tr>
<td>2</td>
<td>(J/\psi) S</td>
<td>NP</td>
<td>(\omega_i CB_1(m) + (1 - \omega_i) G_1(m))</td>
<td>(E_1(\tau))</td>
</tr>
<tr>
<td>3</td>
<td>(\psi(2S)) S</td>
<td>P</td>
<td>(\omega_i CB_2(m) + (1 - \omega_i) G_2(m))</td>
<td>(\delta(\tau))</td>
</tr>
<tr>
<td>4</td>
<td>(\psi(2S)) S</td>
<td>NP</td>
<td>(\omega_i CB_2(m) + (1 - \omega_i) G_2(m))</td>
<td>(E_2(\tau))</td>
</tr>
<tr>
<td>5</td>
<td>Bkg</td>
<td>P</td>
<td>flat</td>
<td>(\delta(\tau))</td>
</tr>
<tr>
<td>6</td>
<td>Bkg</td>
<td>NP</td>
<td>(E_3(m))</td>
<td>(E_4(\tau))</td>
</tr>
<tr>
<td>7</td>
<td>Bkg</td>
<td>NP</td>
<td>(E_5(m))</td>
<td>(E_6(</td>
</tr>
</tbody>
</table>
Invariant dimuon mass and lifetime

Simultaneous Fit Method

PbPb projections

Weights: Acceptance, trigger and reconstruction efficiency
As can be seen, the data are in very good agreement with the theoretical prediction within the uncertainties.
As can be seen, the data are in very good agreement with the theoretical prediction within the uncertainties.
Non-prompt fraction of J/ψ in pp 5.02 TeV vs. \(p_T \) for \(|y|\) slices

\[
\mathcal{f}_{\text{NP}}^{\psi(nS)} = \frac{N_{\psi(nS)}^{\text{NP}}}{N_{\psi(nS)}^{\text{NP}} + N_P}
\]

ATLAS Preliminary

\(pp \sqrt{s} = 5.02 \text{ TeV}, \int L dt = 25 \text{ pb}^{-1} \)

J/ψ Non-Prompt Fraction

- 0.00 < |\(y \)| < 0.75
- 0.75 < |\(y \)| < 1.50
- 1.50 < |\(y \)| < 2.00

Strong \(p_T \) dependence

No significant |\(y \)| dependence
Non-prompt fraction of J/ψ in pp 5.02 TeV, 13 TeV and 1.96 TeV

Good agreement between the different energies
R_{AA} vs. p_T

Integrated y and centrality

Prompt

$R_{AA} = \frac{N_{AA}}{\langle T_{AA} \rangle \sigma_{pp}}$

non-Prompt

Increasing R_{AA} as a function of p_T

Flat along the p_T range
R_{AA} vs. $|y|$
Integrated p_T and centrality

Prompt

Integrated p_T and centrality

non-Prompt

Integrated p_T and centrality

No significant $|y|$ dependence
J/ψ is strongly suppressed in most central collisions
Suppression of $\psi(2S)$ to J/ψ vs N_{part}

Prompt

non-Prompt

Stronger suppression of $\psi(2S)$ with respect to the J/ψ

Consistent with 1
Conclusions

pp collision

- Measurement of the J/ψ and ψ(2S) production Cross Section for prompt and non-prompt component.
- Measurement of non-prompt fraction.

First measurement of quarkonia production in PbPb with ATLAS

- Per-event Yields of prompt and non-prompt production of J/ψ for different centrality classes.
- non-prompt fraction for different centrality classes.
- $J/\psi R_{AA}$ as a function of p_T, $|y|$ and N_{Part}. For prompt and non-prompt component.
- ψ(2S) to J/ψ double ratio as a function of N_{Part}. For prompt and non-prompt component.
Additional Slides
Centrality vs. Fcal

ATLAS Preliminary

Pb+Pb, 5 μb⁻¹, \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

\[\Sigma E_T^{FCal} \text{ TeV} \]
Per-event-yields prompt and non-prompt J/ψ

$\frac{1}{N_{\text{evt}}} \frac{dN}{dy}$ vs p_T for prompt J/ψ, $|y| < 2.0$

$\frac{1}{N_{\text{evt}}} \frac{dN}{dy}$ vs p_T for non-prompt J/ψ, $|y| < 2.0$

Poster by Jorge
Simultaneous Fit Method

\[\text{PDF}(m, \tau) = \sum_{i=1}^{7} \kappa_i f_i(m) \cdot h_i(\tau) \otimes g(\tau), \]

The composite PDF terms are defined as follows:

- \textit{CB} - Crystal Ball;
- \textit{G} - Gaussian;
- \textit{E} - Exponential;
- Resolution function \(g(\tau) \) is a double Gaussian function;
- \(\delta \) - delta function.