Excess of J/ψ yield at very low p_T in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV with STAR

Wangmei Zha for the STAR Collaboration
J/ψ production modification in hadronic A+A collisions

- Hot medium effects:
 - Color Screening
 - “Smoking gun” signature for QGP
 - Regeneration
 - Recombination of charm quarks

- Cold Nuclear Matter effects:
 - PDF modification in nucleus
 - Initial-state energy loss
 - Cronin effect
 - ……..

The interplay of these effects can explain the results from SPS to LHC!
Introduction to photon interactions in A+A

- Studied in detail for Ultra-Peripheral Collisions (UPC)
 - UPC conditions: $b > 2R_A$, no hadronic interactions

- This large flux of quasi-real photons makes a hadron collider also a photon collider!

- Photon-nucleus interactions:
 - Coherent: emitted photon interacts with the entire target nucleus.
 - Incoherent: emitted photon interacts with nucleon or parton individually.
Features of coherent photon-nucleus interaction

- **Coherently:**
 - ✓ Both nuclei remain intact
 - ✓ Photon/Pomeron wavelength \(\frac{h}{p} > R_A \)
 - ✓ \(p_T < \frac{h}{R_A} \) \(\sim \) 30 MeV/c for heavy ions
 - ✓ Strong couplings \((Z\alpha_{EM} \sim 0.6) \) \(\rightarrow \) large cross sections

- **Interference:**
 - ✓ Two indistinguishable processes (photon from \(A_1 \) or \(A_2 \))
 - ✓ Vector meson \(\rightarrow \) opposite signs in amplitude
 - ✓ Significant destructive interference for \(p_T << 1/b \)

PRL 84 2330 (2000)
Excess of J/ψ production at very low p_T with ALICE

- Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- Origin from coherent photon-nucleus interactions?

Measurement of J/ψ yield at very low p_T in hadronic collisions (U+U and Au+Au):
- Enhancement of J/ψ yield at very low p_T?
- If so, what are the properties and origin of the excess?
 - p_T, centrality and system size dependence of the excess; t distribution.
STAR detector

- **Large acceptance:**
 \[|\eta| < 1, \ 0 < \phi < 2\pi \]

- **Time Projection Chamber (TPC)** – tracking, particle identification, momentum

- **Time of Flight detector (TOF)** – particle identification

- **Barrel ElectroMagnetic Calorimeter (BEMC)** – electron identification, triggering
Electron Identification

$1/\beta$ distribution for electrons and hadrons from TOF

Normalized $dE/dx (n\sigma_e)$ distribution before and after TOF cuts

p/E distribution for electrons and hadrons from BEMC

J/ψ signal

Centrality: 40 – 80%

The signal is extracted by subtracting the mixed event background from the unlike-sign pairs.

Good signal over background ratio!

STAR Preliminary

Signal: 102
Background: 11
S/B: 8.9
Significance: 9.6σ
J/ψ invariant yield in Au+Au and U+U Collisions

- Significant enhancement of J/ψ yield observed at p_T interval 0 – 0.2 GeV/c for peripheral collisions (40 – 80 %).
- The yield of J/ψ at very low p_T in Au+Au is similar to that in U+U within uncertainties.

Function to describe hadronic production:

$$\frac{d^2N}{p_T dp_T} = a \times \frac{1}{(1 + b^2 p_T^2)^n}$$
J/ψ yield at very low p_T versus centrality

- Low p_T J/ψ from hadronic production is expected to increase dramatically with N_{part}.
- No significant centrality dependence of the excess yield!
- No significant difference between Au+Au and U+U collisions.
J/ψ dN/dt distribution for Au+Au 40-80%

Similar structure to that in UPC case!
Indication of interference!

- Interference shape from calculation for UPC case
 - PRL 84 2330 (2000)

- Similar slope parameter!
 - Slope from STARLIGHT prediction in UPC case
 - $-196 \text{ (GeV/c)}^{-2}$
 - Slope w/o the first point: $199 \pm 31 \text{(GeV/c)}^{-2}$
 - $\chi^2/NDF = 1.7/2$
 - Slope w/ the first point: $164 \pm 24 \text{(GeV/c)}^{-2}$
 - $\chi^2/NDF = 5.9/3$

ρ₀ cross-section as a function of the momentum transfer squared ($t \approx p_T^2$) from STAR UPC measurements.

- The slope from the exponential fit reflects the size and shape of target.
The scaled rapidity and p_T distributions follow a universal trend.

pp baseline at very low p_T is interpolated from the world-wide experimental data.

J/ψ $p+p$ baseline extraction from world-wide data

J/ψ \(R_{AA} \) for Au+Au and U+U collisions

\[R_{AA} \sim 20 \text{ in } 60 – 80\% \text{ centrality at } p_T \text{ interval } 0 – 0.1 \text{ GeV/c} \]

\[R_{AA} \sim 4 \text{ for } 40 – 60\% \text{ centrality at } p_T \text{ interval } 0 – 0.1 \text{ GeV/c} \]
Summary

- Significant excess of J/ψ yield at p_T interval 0 – 0.2 GeV/c is observed for peripheral collisions (40 – 80%).

- The excess trend shows no significant centrality dependence (30 – 80%) within uncertainties, which is beyond the expectation from hadronic production.

- The properties of the excess are consistent with the physical picture of coherent photon-nucleus interactions.
 - Similar dN/dt distribution to that in UPC case.
 - Indication of interference at p_T interval 0 – 0.03 GeV/c.
 - The extracted nuclear form factor slope is consistent with nucleus size.
Discussion and outlook

- Challenges for theoretical calculations in hadronic peripheral collisions:
 - How do the broken nucleus satisfy the condition of coherence?
 - No significant dependence of production on impact parameter?
 - The coherent cross section increases dramatically with decreasing impact parameter in UPC collisions.
 - Cancellation of photon flux in the overlapping region of colliding nuclei for hadronic peripheral collisions.
 - How large is incoherent contribution?
 - Can the products of coherent photon-nucleus interactions serve as a probe to test the cold and hot medium effects?

- Future experimental measurements:
 - More differential measurements for J/ψ.
 - The excess of other vector meson (ρ, ω, φ, Y ...) in hadronic collisions?
 - The excess of photon-photon process (π⁰, η, η’, f₂(1270), a₂(1320), π⁺+π⁻, e⁺+e⁻, μ⁺+μ⁻ ...)?