Direct Photon Production and Azimuthal Anisotropy at Low Transverse Momentum Measured in PHENIX

Wenqing Fan for PHENIX Collaboration

Hard Probes 2016
Outline

- Direct photons and motivation
- Measurement of photons in PHENIX
- Result: direct photon v_2 and v_3
- New Conversion Photon Reconstruction Technique
- Summary and outlook
Photon Production in Heavy Ion Collision

- Direct photon
 - color blind probes (leave the medium without further interaction)
 - info of the entire evolution of the colliding system (integrated over space and time)

- More differential measurement would disentangle the photon production sources
Measurement at PHENIX — 3 Methods

- **calorimetric measurement**
 - γ
 - good resolution at high p_T
 - low p_T is contaminated by hadrons

- **internal conversions**
 - $\gamma^* \rightarrow e^+ + e^-$
 - bkg from hadron decay photon reduced by a factor of 5 (small bkg)
 - 1/1000 signal reduction

- **external conversions**
 - $\gamma \rightarrow e^+ + e^-$
 - more statistics compared to internal conversion
 - good resolution at low p_T
Measurement at PHENIX — 3 Methods

- **calorimetric measurement**
 - γ
 - good resolution at **high** pT
 - low pT is contaminated by hadron

- **internal conversions**
 - $\gamma^* \rightarrow e^+ + e^-$
 - bkg from hadron decay photon reduced by a factor of 5 (small bkg)
 - 1/1000 signal reduction

- **external conversions**
 - $\gamma \rightarrow e^+ + e^-$
 - **more statistics** compared to internal conversion
 - good resolution at **low** pT
Measurement at PHENIX — 3 Methods

- **calorimetric measurement**
 - γ
 - good resolution at high pT
 - low pT is contaminated by hadron

- **internal conversions**
 - $\gamma^* \rightarrow e^+ + e^-$
 - bkg from hadron decay photon reduced by a factor of 5 (small bkg)
 - 1/1000 signal reduction

- **external conversions**
 - $\gamma \rightarrow e^+ + e^-$
 - more statistics compared to internal conversion
 - good resolution at low pT

3 independent measurements in good agreement with each other

\[\sqrt{s_{NN}} = 200\text{GeV} \]
Direct Photon v_n Measurement in Au+Au

- Event plane method
 \[\frac{dN}{d\phi} = 1 + \sum 2v_n \cos(n(\phi - \Psi_n)) \]
 Measure azimuthal distributions of photons with respect to event plane

- To determine direct photon v_2, v_3

- Inclusive photon v_2, v_3

 external conversions / calorimetric method

\[v_n^{\text{dir}} = \frac{R_\gamma v_n^{\text{inc}} - v_n^{\text{dec}}}{R_\gamma - 1} \]

arxiv:1509.07758
Estimate decay photon v_n

- Use measured yield and anisotropy of charged and neutral pions
- v_n for heavier mesons estimated by KE_T

$$v_n^{\text{meson}}(KE_T) = v_n^\pi(KE_T) \quad \text{with} \quad KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m$$

- Use the meson yields and v_n in MC, process them through all decay chains including photons to calculate the decay photon v_n
Systematic Uncertainty on \(v_n\)

- Using Gaussian error propagation

\[
\sigma_{v_n}^2 = \left(\frac{R_\gamma}{R_\gamma - 1}\right)^2 \times \sigma_{v_n}^{inc} + \left(\frac{1}{R_\gamma - 1}\right)^2 \times \sigma_{v_n}^{dec} + \left(\frac{v_n^{dec} - v_n^{inc}}{R_\gamma - 1}\right)^2 \times \sigma_{R_\gamma}^2 + \sigma_{EP}^2
\]

- Non-linear dependence of uncertainty on \(R_\gamma\)
 - Modeling the probability distribution of possible values of \(v_n^{dir}\)
 - Assuming the individual statistical and systematic uncertainties follow Gaussian probability distributions

Systematic Uncertainties for \(v_2\)

<table>
<thead>
<tr>
<th>Sources</th>
<th>0~20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_\gamma)</td>
<td>5.5%</td>
</tr>
<tr>
<td>(v_2^{inc})</td>
<td>4%</td>
</tr>
<tr>
<td>(v_2^{dec})</td>
<td>5%</td>
</tr>
<tr>
<td>Event plane</td>
<td>3%</td>
</tr>
</tbody>
</table>
Direct Photon v_n

- To determine direct photon v_2, v_3

\[v_n^{\text{dir}} = \frac{R_\gamma v_n^{\text{inc}} - v_n^{\text{dec}}}{R_\gamma - 1} \]

- Large v_2 observed (comparable to hadron v_2 in low p_T region)
- Strong centrality dependence
- Showing trend to 0 toward high p_T
- Unclear $v_2 \rightarrow 0$ for $p_T \rightarrow 0$

- Sizable v_3 observed ($\sim v_2/2$)
- Independent of centrality
Comparison with Theoretical Models

- Thermal photons (HG+QGP), pQCD with fireball scenario
 - H. van Hees, C. Gale, R. Rapp PRC 84 054906 (2011)
 - Include finite initial flow at thermalization
 - Include resonance decays and hadron-hadron scattering
 - Blue shift of HG spectrum included

- Microscopic transport (PHSD)
 - Parton-Hadron-String dynamics
 - Include large contribution from hadron-hadron interaction in HG using Boltzmann transport
 - Include thermal photons from QGP

- Enhanced non-equilibrium effects (glasma, etc.)
 - C. Gale et al., PRL114, 072301 + priv.comm. with Y Hidaka and J-F. Paquet
 - Semi-QGP is the QGP near \(T_c \)
 - Annihilation and Compton processes around hadronization time are naturally included

- Enhanced early emission from magnetic field
 - Initial strong magnetic field produces anisotropy of photon emission
 - Magnetic field + thermal photons (lattice QCD)
Direct Photon Puzzle

- Large yield & large v_2
 - Large yield: emission from the **early stage** when temperature is high
 - Large v_2: emission from the **late stage** when the collective flow is sufficiently built up

Challenge for theoretical model to describe large yield and v_2 simultaneously!
New Conversion Photon Reconstruction Technique

Identify and reconstruct photons via external conversion to e^+e^- pairs

- Previous method used single e^+/e^- tracks (2010)
 - Conversions at fixed radius (Hadron Blind Detector readout plane at 60cm, ~3%)
- New method used e^+e^- pairs (>2011)
 - Conversions at any material (VTX 3rd and 4th layer, ~10%)
Future Measurements

- Run10 AuAu at 39GeV and 62GeV will provide more insight in direct photon production (with the previous published method)
- Larger statistics from Run14 AuAu will provide accurate measurement of v_n (v_2, v_3, v_4) at low p_T
- v_n measurement in most central CuAu will provide useful input in understanding of chiral magnetic field effect, if any
- pA, He3Au, dAu results will help to understand properties of the medium created in small systems
- New pp results will extend the measurement to lower p_T
Conclusions

- PHENIX has detailed measurements of the direct photon v_2, v_3 in $\sqrt{s} = 200\text{GeV}$ Au+Au collisions

- A sizable v_2 and v_3 are observed for direct photons, provide constrains to theoretical model

- Theoretical picture still incomplete to describe large yield and v_2 simultaneously

- More future measurements from PHENIX are coming
THANKS!
BACKUPS
Res\((\Psi_n) \) is measured with 2-subevent method.

(a) RxN Inner+Outer (S+N)
 South: \(-2.8 < \eta < -1\)
 North: \(1 < \eta < 2.8\)

(b) MPC (S+N)
 South: \(-3.7 < \eta < -3.1\)
 North: \(3.1 < \eta < 3.9\)

PHENIX
Au+Au 200GeV
Photon Identification

- **EMCal method**: measure photons that deposit energy in the EMCal
 - Shower shape cut
 - Charged track veto cut

- **External conversion method**: measure photons that convert in detector material
 - Focus on conversions at HBD backplane (~60cm)
 - Identified by the invariant mass of the e+e- pairs
 - Artificial mass due to vertex origin assumption when reconstructing momentum
 - Calculate momentum both assuming vertex origin and true origin
- Ratio of the inclusive photon to decay photon yield
 - Using external conversion method

\[R_\gamma = \frac{\gamma^\text{incl}}{\gamma^\text{hadron}} = \frac{\langle \epsilon_\gamma f \rangle}{\left(\frac{N_\gamma^\text{incl}}{N_\gamma^\pi^0} \right)_{\text{Data}}} \]

\[\frac{\gamma^\text{hadron}}{\gamma^\pi^0} \left(\frac{N_\gamma^\text{incl}}{N_\gamma^\pi^0} \right)_{\text{Sim}} \]

(a) 0-20%
(b) 20-40%
(c) Au+Au \(\sqrt{s_{\text{NN}}} = 200\text{GeV} \)
(d) PRL 104, 132301

Present data

\[p_T \text{ [GeV/c]} \]
Disentangling different photon sources

More differential measurement would disentangle the photon production sources

<table>
<thead>
<tr>
<th>Sources</th>
<th>p_T</th>
<th>v_2</th>
<th>v_3</th>
<th>v_n t-dep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field</td>
<td>All p_T</td>
<td>Positive down to $p_T=0$</td>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>Primordial (jets)</td>
<td>High p_T</td>
<td>\simzero</td>
<td>\simzero</td>
<td></td>
</tr>
<tr>
<td>QGP (thermal)</td>
<td>Mid p_T</td>
<td>Positive and small</td>
<td>Positive and small</td>
<td></td>
</tr>
<tr>
<td>Jet-Brems.</td>
<td>Mid p_T</td>
<td>Positive</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Jet-photon conversion</td>
<td>Mid p_T</td>
<td>Negative</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Hadron-gas (thermal)</td>
<td>Low p_T</td>
<td>Positive and sizable</td>
<td>Positive and sizable</td>
<td></td>
</tr>
</tbody>
</table>
Fitting function

\[
\frac{dN}{dy} = a \left(1 + \frac{p_T^2}{b}\right)^c
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(8.3 ± 7.5) × 10^3</td>
<td>2.26 ± 0.78</td>
<td>-3.45 ± 0.08</td>
</tr>
</tbody>
</table>

- The actual lowest data point in the fit is 1 GeV
- The fit < 1 GeV is motivated by Drell-Yan measurement

\(\sqrt{s_{NN}} = 200 \text{ GeV} \)