Event-by-Event Simulations of Jet Modification Using the MATTER Event Generator

Michael Kordell II

Overview

- Purpose
- Code Flow and Details
- Calculations
- Results
- Summary

Purpose

- Wish to simulate jet modification in a medium
- Want to do this simulation on an event-by-event basis
- To perform this, we constructed a Monte-Carlo event generator

Code Flowchart

PYTHIA

- Used to generate hard event for jet
- Gives cross-section for jet production
- Generate bins of hard event pT, then sum over all events (after jet simulation) with each bin weighted by its cross-section

OSU Hydro

- Is a 2d+1 Hydro Simulation
- Provides medium profile (entropy density) for jet quenching
- Initial density profile T_{AA} sampled to determine jet start location

MATTER

- Uses Higher-Twist formalism to simulate jet showering in both vacuum and in medium
- Reads in initial parton id and pT from PYTHIA
- Reads in T_{AA} and entropy density from hydro
- Takes the initial hard parton and creates a shower using the hydrodynamic profile
- Outputs a shower of quarks and gluons for hadronization and/or analysis

Hard Probes 2016

MATTER details

Few scatterings per emission limit

All of this evolution is hiding within \hat{q} .

Light quark modification is sensitive to the high Q², low-x part of the in-medium gluon distribution.

Abhijit Majumder, Quark Matter 2014

MATTER details II

$\overline{z} = z + z' / 2$ $\partial z = z - z'$

$$\int_{0}^{\infty} d^{4} \, \overline{z} \exp[i(\partial q)\overline{z}]$$

 $d^4 \partial z \exp[i\partial z\overline{q}]$

∂q is the uncertainty in q

Abhijit Majumder, Quark Matter 2014

MATTER details III

A reasonable uncertainty is: $\partial q \leq q$

Assume a Gaussian distribution around q+

Set functional form for the width by imposing: $<T> = 2q^{--} / Q^2$

To get z^- distribution, only need to assume ∂q^+ distribution

Sample the in medium modified Sudakov form factor to get virtuality at each step Abhijit Majumder, Quark Matter 2014

$$p(\delta q^{+}) = \frac{\exp[-\frac{(\delta q^{+})^{2}}{2[2(q^{+})^{2}/\pi]}]}{\sqrt{2\pi[2(q^{+})^{2}/\pi]}}$$

Calculations

- MATTER returns list of partons with corresponding momentum and position for each
- Fastjet used to cluster partons (not hadrons!) into jets
- R_{AA} calculated by generating spectra over each hard pT bin, weighting each bin by its cross-section, then summing over them to get the total spectra; Dividing in-medium by vacuum spectra gives R_{AA}
- For leading hadron RAA, the KKP fragmentation function was used on the quark/gluon spectra to generate hadron spectra.

Now for some PRELIMINARY RESULTS!

RAA for leading pions compared to PHENIX

RAA for jets – RHIC energies

R_{AA} for charged hadrons compared to CMS

http://cms-results.web.cern.ch

R_{AA} for jets compared to CMS

Doga Gulhan – Report from CMS; HP2016

Summary

Showed some prelimary results

Need to handle partons with virtuality of IGeV or less

• Need to incorporate medium response via source term

• Further calculations to be simulated, such as v_2 , jet shapes, etc.

