Hard Probes 2016

Reconstructed jets in a multi-phase transport model

Guo-Liang Ma

This work is in collaboration with M. W. Nie(SINAP), Z. Gao (CCNU), H. Z. Zhang(CCNU), G. Y. Qin(CCNU), B. W. Zhang(CCNU).

Outline

- Model introduction
- Results on reconstructed jets
 - Dijet asymmetry
 - Jet shape
 - Jet fragmentation function
 - Jet vn
 - Overall balance of dijet event
- Summary

AMPT model with triggered jet

- Dijet events for Pb+Pb 2.76-TeV collisions.
- String-melting AMPT simulations: 1.5 mb / 0 mb to turn on/off jet-QGP interactions.

Jet reconstruction

- Jet reconstruction: anti-kt algorithm, [Fastjet package, background subtraction, jet energy scale correction, jet efficiency correction]
- Dijet asymmetry: R=0.5, $p_{T,1}>120$ GeV/c, $p_{T,2}>50$ GeV/c, $|\eta_{1,2}|<2$, $\Delta\phi_{12}>2\pi/3$
- Jet fragmentation function and shape: R=0.3, p_T^{jet}>100 GeV/c, 0.3<|η^{jet}|
 <2, p_T^{ch}>1 GeV/c
- Jet v_n : R=0.2, $p_T^{jet}>45$ GeV/c, $|\eta^{jet}|<2$

Dijet characters

- Dijet p_T spectra and back-to-back azimuthal correlation are not sensitive to if partonic phase exists.
- Dijet asymmetry is enchanced due to strong parton cascade.

Dijet asymmetry

- A large dijet asymmetry (A_J) is produced by strong interactions between jets and partonic matter.
- The final A_J is driven by both initial A_J and partonic jet energy loss.

Jet shape

0.8

0.05

0.1

0.15

0.2

radius (r)

- •A dynamical evolution of jet shape modifications in A+A:
 - •Parton cascade: Jet energy is redistributed towards larger radius.
 - Coalescence: weaken the jet modification (a qualitative feature).
 - Hadron rescatterings: futher modification by pushing the jet energy outwards further.

Leading vs subleading jet shapes

- •Subleading jet has a larger medium modification than leading jet. This ordering is consistent with the new CMS measurement.
- The jet shape slightly depends on the dijet asymmetry Aj, consistent with the new CMS data.

Jet fragmentation function

- p+p: good agreement between AMPT results and exp data.
- Pb+Pb: Jet fragmentation function evolves, but none of them can describe exp data.

Decomposition of jet fragmentation function

G.L. Ma, PRC 88, 021902(R) (2013)

$$R(\xi) = \lambda_f R_f(\xi) + \lambda_c R_c(\xi)$$

Fragmentation Coalescence part part

TABLE I: The fitting parameters of λ_f and λ_c for different centrality bins in Pb+Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV.

	λ_f	λ_c
0-10%	0.377 ± 0.147	0.612 ± 0.120
10-30%	0.346 ± 0.156	0.616 ± 0.131
30-50%	0.599 ± 0.168	0.386 ± 0.137
50-100%	0.379 ± 0.370	0.527 ± 0.338

- •Frag. part $[\lambda_f R_f(\xi)]$: more important for low- ξ range in more peripheral collisions.
- •Coal. part $[\lambda_c R_c(\xi)]$: more dominant for high- ξ range in more central collisions.

Baryon vs meson for jet fragmentation function

• Large high- ξ enhancement of R(ξ) for protons compared to for pions, if the relative increase of coalescence part in central Pb+Pb collisions.

Jet anisotropy

- •Jet $v_2\{\psi_2=0\}$ is consistent with jet $v_2\{\psi_2\}$.
- •Jet v_3 is smaller than jet v_2 .
- •Jet energy loss fraction depends on the azimuthal angles with respect to ψ_n .=>a path-length dependence of jet energy loss.

Overall momentum balance of dijet event

$$p_T^{||} = \sum_{i} -p_T^i \cos(\phi_i - \phi_{leadingjet}),$$

- •Good description for p+p (left) and peripheral Pb+Pb(not shown here).
- •Overestimation of 0.5<pT<2.0GeV/c may be due to the lack of jet radiation energy loss in central Pb+Pb (right).

Summary

Various aspects are studied through reconstructed jets from the AMPT model with triggered dijet:

- Dijet asymmetries: driven by both initial asymmetries and final partonic jet energy loss.
- Jet shape modification: subleading jet >leading jet, and slightly depends on Aj.
- Jet fragmentation function: fragmentation + coalescence, =>larger high- ξ enhancement for baryon.
- Jet vn: arises from path-length dependence
- Overall balance of dijet events: jet radiation energy loss is more important in central A+A.

Thanks for your attentions!