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A Hybrid Model: Motivation

Wide hierarchy of scales in (HE) jet dynamics: 
• Production and branching perturbative 
• Interaction with QGP non-perturbative

Approached through simple and phenomenological model: 
• Vacuum like production and showering 
• Differential energy loss rate from holography 
• Neglect medium induced modification of splittings (for now) 
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Monte Carlo  
Implementation

Jet production and evolution in PYTHIA 

Assign spacetime description to parton shower (formation time argument) 

Embed the system into a hydrodynamic background (2+1 hydro code from Heinz and Shen)  

Between splittings, partons in the shower interact with QGP, lose energy 

Turn off energy loss below a       that we vary over  

Extract jet observables from parton shower

Tc 145 < Tc < 170MeV

⌧f =
2E

Q2

more details in 
MCs Round Table today
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Use this one point to constrain our one parameter. 
Bands come from experimental uncertainty on this point  

plus varying      over                                    tTc 145 < Tc < 170MeV



Broadening

Partons receive transverse kicks according to a gaussian distribution 

The width of the gaussian is 

Such mechanism introduces a new parameter 

Transverse kicks can broaden the jet and kick particles out of the jet

K =
q̂

T 3

(�kT )
2 = q̂ dx

more details in 
MCs Round Table today
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Broadening: RAA vs R
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due to higher number of energy loss sources

Small effect on quenching due to broadening 
translates into small energy recovery 

by opening the jet radius



Broadening

Small sensitivity of jet shapes to broadening: 
• strong quenching removes soft fragments that appear early 
• remaining soft tracks fragment late
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Kinematical cuts for partons chosen such that: 
• there is no effect from background (soft tracks) 
• we focus on jets without unfragmented cores (hard tracks)
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0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

0-10% Centrality

10 < P parton

T

< 20 GeV

P
b
P
b
/p

p

r

K=100
K=40
K=20
K=0

Subleading jet
in a dijet pair

PARTONIC



A New Observable, Sensitive to Broadening

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

0-10% Centrality

5 < Phadron

T

< 10 GeV

P
b
P
b
/p

p

r

K=100
K=40
K=20
K=0

Subleading jet
in a dijet pair

HADRONIC

Hadrons with a given range of momenta 
originate from partons with a wider range of momenta

Direct experimental determination of Gaussian broadening strength

motivated by CMS analysis CMS-HIN-15-011 
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After constraining the Gaussian broadening strength,
the longer term goal will be to look for the rare hard momentum scatterings

given by the short distance quasiparticles in the soup
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Dijet Acoplanarities
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Higher energy jets are narrower: less acoplanar

Energy loss narrows the distributions, while
broadening widens them back

Effects strongest for lower energies due to 
more steeply falling spectrum



Boson Jet Acoplanarities
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more on Boson Jet observables in the Backup



An Estimate of Backreaction

Hydro response to jet passage: 

Assumption: small perturbation of hydro 

Consequence:   
• no details on the perturbation are needed 
• distribution fully constrained by E-M conservation 
• no additional parameters

Chester and Yaffe 0712.0050

energy-momentum conservation

more details in 
MCs Round Table today
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RAA vsR
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hinted in experiments (?)
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Improved precision on such measurements will greatly constrain 
medium response / gluon re-scattering assumptions
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• Higher Pt jets tend to be narrower           increase of ratios with Pt
• Wider jets more suppressed                    PbPb ratios always above pp ones        
• <#Tracks> increases with Pt                    PbPb vs pp separation increases with Pt

motivated by ALICE analysis arXiv:1506.03984



Backreaction on Intra-Jet Observables
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• The effect goes in the right direction
• Clearly not enough to explain angular structure

• Oversimplified backreaction?
• Hadronization uncertainties? (medium and vacuum)
• Finite resolution effects?



Recovering Lost Energy: Missing Pt
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Recovering Lost Energy: Missing Pt

• In PbPb, more asymmetric dijet events are
dominated by soft tracks in the subleading jet side

• Discrepancies w.r.t. data in the semi-hard regime
motivate improvements to our model
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Finite Resolution Effects

The QGP cannot resolve  
sister partons until they are  
separated a certain distance

If a member of the offspring  
of a certain parton resolves,  
then color correlations break  
and such parton resolves as well 
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Finite Resolution Effects
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Photon Jet

• Photons do not interact with plasma

• Look for associated jet 

 -Different geometric sampling 

 -Different species composition 

 -       proxy for E� Ejet



Photon Jet @ 2.76 TeV
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Photon Jet @ 5.02 TeV
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Photon Jet @ 5.02 TeV
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Z Jet @ 5.02 TeV
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Strong Coupling
There are no jets in N=4 SYM at strong coupling 

e+e- decay

Weak Strong

Problem for hard probes

Hofman and Maldacena 08 
Hatta, Iancu, Mueller 08



Energetic Excitations

Classical string Boosted virtual photon

Chesler, Jensen, Karch, Yaffe 08 Arnold and Vaman 10



A Heuristic Picture



Parameters

Strong Coupling

x

stop

⇠ (3� 4)xN=4
stop

Parameter is of order one as expected

(via semiclassical strings)

(smaller number of degrees of freedom!)

• All the difference between N=4 and QCD leads to 
an order one modification of the stopping distance



SYM at            vs QCD at 

• Confinement scale and chiral condensate scale play no role above 
critical temperature 

• Regime above      in colliders strongly coupled (     corrections) 

• Different degrees of freedom (how do observables depend on 
this?) 

•                  (       corrections)  

•                         or              , but contributions from fundamental 
representations are important for thermodynamics above  

• QCD running of the coupling constant significantly non-conformal 
just above      (but increasingly conformal with higher    ) 

N = 4 T 6= 0 T > Tc
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Nc

Tc

Tc

Nc ! 1

Nc ! 1, � ! 1

0 < Nf ⌧ Nc Nf = 0
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