Baryon to meson ratio in jets and underlying events in pp, p-Pb, Pb-Pb collisions measured in ALICE

Yonghong Zhang for the ALICE Collaboration

Central China Normal University, Wuhan, China

24/09/2016
Outline

- Physics motivation
- ALICE setup
- Analysis strategy
- Results and discussion
- Summary and outlook
Physics Motivation

- Baryon to meson enhancement in Pb-Pb and p-Pb observed w.r.t. pp collisions
 - Involving several phenomena
 1. Bulk effect (radial flow, coalescence/recombination)?
 2. Jet fragmentation (??)
- Λ/K_S^0 ratio in jets and underlying events
- Separation of soft and hard processes

![Graphs showing Λ/K_S^0 ratio in Pb-Pb and p-Pb collisions](ALI-PUB-55067)

![Graphs showing Λ/K_S^0 ratio in Pb-Pb and p-Pb collisions](ALI-PUB-58065)

ALICE setup

Time projection Chamber (TPC)
- $|\eta| < 0.9$
- charged particle tracking and particle identification

Inner Tracking System (ITS)
- $|\eta| < 0.9$
- vertex reconstruction
- event trigger

V0A (only for pPb) + V0C
- $2.8 < \eta < 5.1$ & $-3.7 < \eta < -1.7$
- event multiplicity class determination
- event trigger

Advantage: Particle Identification

Data sample: pp collisions at 7 TeV, p-Pb collisions at 5.02 TeV, Pb-Pb collisions at 2.76 TeV
- pp collisions with 127 MB events, collected in 2010
Analysis strategy

- **V⁰ candidate selection**
 - Select V⁰ candidates by decay topology
 - Signal extract from invariant mass distribution
 - Acceptance: |η| < 0.75

- **Jet reconstruction**
 - Charged particles |η| < 0.9, pₜ > 150 MeV/c
 - With excluding V⁰ daughters
 - anti-κ, R = 0.4 and 0.2, |η_{jet}| < 0.35

- **V⁰s matched with jets (JC)**
 - V⁰s and jets are reconstructed independently
 - Match V⁰s with jets by angular distance between the jet axis and the V⁰ direction
 \[\sqrt{(\eta_{V^0} - \eta_{jet})^2 + (\varphi_{V^0} - \varphi_{jet})^2} < R_{matching} \]

- **V⁰s in underlying events (UE)**
 - PC (default): V⁰s in the perpendicular cone
 - NJ: V⁰s in event without jet within pₜ > 5 GeV/c
 - OC: V⁰s outside the jet cone
The spectra normalised per area density and corrected by efficiency and feed down

- V^0s in jets: JC V^0s - UE V^0s
- Density of UE V^0s is smaller than that of JC V^0s, the effect is only relevant at low-p_T, overall the effect is small
Corrected density of V^0s in jets with $R_{jet} = 0.2$

- Density of JC V^0s for $R = 0.2$ is higher than that for $R = 0.4$
- V^0 transverse profile peaked around jet axis
Spectra of strange particles in charged jets in Pb-Pb collisions

\(p_T^{\text{jet, ch}} > 10 \text{ GeV/c} \) \hspace{1cm} \text{Pb-Pb} \hspace{1cm} \(p_T^{\text{jet, ch}} > 20 \text{ GeV/c} \)

- \(V^0 \) \(p_T \) spectra are obtained with same method as that in pp analysis
 - Additional correction for impact of UE fluctuations applied
Comparison to PYTHIA simulations

\(p_{\text{jet,ch}}^{\text{jet,ch}} > 10 \text{ GeV/c} \)

\(p_{\text{T}}^{\text{jet,ch}} > 20 \text{ GeV/c} \)

- \(V^0 p_T \) spectra in data follow similar slope as predicted by PYTHIA simulations
 - \(\Lambda \) - shows clear enhancement at low \(p_T \) (< 4 - 5 GeV/c)
 - Indication of that we need better reference measurements to become more quantitative
1. K_S^0 and Λ in the UE region - consistent with inclusive measurements
2. Λ/K_S^0 ratio in jets is unambiguously different from the UE (and inclusive)
3. UE subtraction most relevant at low-p_T
4. Slight decrease of the ratio with decreasing $R(V^0, \text{jet})$
5. The ratio is flat with $p_T, V^0 > 3 \text{ GeV}/c$, and consistent with inclusive V^0s at high p_T
Comparison with Pb-Pb, p-Pb collisions

Pb-Pb

Comparison with Pb-Pb, p-Pb collisions

pp/p-Pb

- pp consistent with p-Pb within uncertainties in jet $R = 0.4$

• Λ/K_S^0 ratio in jets significantly lower than ratio for inclusive V^0s observed in different collision systems

• Λ/K_S^0 ratio in jets are consistent with inclusive at high p_T in pp, p-Pb and Pb-Pb collisions

• The ratio has no significant $p_T^{\text{jet, ch}}$ dependence

Yonghong Zhang
Summary

- V^0s in jets have been studied in pp, p-Pb and Pb-Pb in ALICE
- Λ/K^0_S ratio in jets are in agreement among different collision systems within systemmetrical uncertainties
- Difference is found unambiguously between V^0 in jets and in UE
- Λ p_T spectra in jets in Pb-Pb collisions show an enhancement at low p_T ($< 4\text{-}5 \text{ GeV}/c$) w.r.t. PYTHIA simulations while being consistent with PYTHIA at higher p_T ($> 5 \text{ GeV}/c$)
- Hint of medium modified jet fragmentation - effect differs between baryons and mesons

Outlook

- Λ/K^0_S ratio in jets with multiplicity dependence in pp and p-Pb
- Λ/K^0_S ratio in jets with centrality dependence in Pb-Pb
- Λ/K^0_S ratio in jets with energy dependence with RUN II Pb-Pb at 5 TeV
Detail cuts

<table>
<thead>
<tr>
<th>selection</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Kink index</td>
<td>< 1</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>TPC refit flag</td>
<td>kTRUE</td>
</tr>
<tr>
<td>number of crossed rows in TPC</td>
<td>> 70</td>
</tr>
<tr>
<td>number of findable rows in TPC</td>
<td>> 0</td>
</tr>
<tr>
<td>crossed rows / findable rows ratio</td>
<td>> 0.8</td>
</tr>
<tr>
<td>TPC dE/dx</td>
<td>< 5 σ</td>
</tr>
</tbody>
</table>

Table 4.1: Default selections for V^0 daughter tracks.

<table>
<thead>
<tr>
<th>selection</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V^0 2D decay radius</td>
<td>in $[0.5,200]$ cm</td>
</tr>
<tr>
<td>negative track DCA to PV</td>
<td>> 0.06 cm</td>
</tr>
<tr>
<td>positive track DCA to PV</td>
<td>> 0.06 cm</td>
</tr>
<tr>
<td>DCA between V^0 Daughters</td>
<td>< 1 σ</td>
</tr>
<tr>
<td>$\cos \theta_{\text{pointing}}$</td>
<td>> 0.97 (K^0_S), > 0.995 (A)</td>
</tr>
</tbody>
</table>

Table 4.2: Default cuts for V^0 decay topological selection
Normalisation

\[
\frac{d\rho}{dp_T^{\text{Inclusive}}} = \frac{1}{N_{\text{event}} \cdot \text{(acceptance)}} \cdot \frac{dN}{dp_T}
\]

\[
\frac{d\rho}{dp_T^{\text{JC}}} = \frac{1}{N_{\text{jet}} \pi r^2 \cdot \text{factor}_{\text{overlapped}}} \cdot \frac{dN}{dp_T}
\]

\[
\frac{d\rho}{dp_T^{\text{PCL}}} = \frac{1}{2 \cdot N_{\text{jet}} \pi r^2 \cdot \text{factor}_{\text{overlapped}}} \cdot \frac{dN}{dp_T}
\]

\[
\frac{d\rho}{dp_T^{\text{PCU}}} = \frac{1}{2 \cdot N_{\text{jet}} \pi r^2 \cdot \text{factor}_{\text{overlapped}}} \cdot \frac{dN}{dp_T}
\]

\[
\frac{d\rho}{dp_T^{\text{OC}}} = \frac{1}{N_{\text{event}} \cdot \text{(acceptance - (N_{\text{jet}}/N_{\text{event}}) \cdot \text{factor}_{\text{overlapped}} \cdot \pi r^2)}} \cdot \frac{dN}{dp_T}
\]

factor describe the overlap effect of multi-jets events
1. Tag hard scattering with charged particle jets (jet pt > 10 GeV/c)
2. Reconstruct Λ and K_s^0 within “Jet Region”
3. Reconstruct Λ and K_s^0 within “UE Region”
4. Correct V^0s in the Jet Region and UE Region.
5. Subtract the Λ and K_s^0 in “UE Region from Jet Region”
6. Correct V^0s by Feeddown correction

Yield and ratio of Λ and K_s^0 in jets
V⁰ candidate selection

- **V⁰ candidate selection**
 - Decay channels

 \[K^0_S \rightarrow \pi^+\pi^- \text{ (BR} = 0.692)\text{ and } \Lambda \rightarrow p\pi^- \text{ (BR} = 0.639)\]

 - Decay topology based on five variables
 - Acceptance: \(|\eta| < 0.75\)
 - Details: see in the backup

- **V⁰ signal extraction**
 - Fit invariant mass with gaussian plus a linear function in each \(p_T\) bin
 - extract the mean and sigma
 - Define the side bands and signal region
 - signal region: \(|M_{\text{inv}} - M_{\text{mean}}| < N\sigma\), default \(N=6\)
 - side bands: \(N\sigma < |M_{\text{inv}} - M_{\text{mean}}| < 2N\sigma\)
 - Background subtraction - bin counting
 - fit with linear function from side bands and interpolate into signal region
Jet reconstruction and V^0-jet matching

- Jet reconstruction
 - Charged particles $|\eta|<0.9$, $p_T>150\text{MeV}$
 - anti-k_T, $R=0.4$ and 0.2, $|\eta_{\text{jet}}|<0.35$

- V^0-jet matching (JC)
 - V^0s and Jets are reconstructed independently
 - Match V^0s and jets with a matching radius

- Underlying V^0s (UE)
 - PC: V^0s in perpendicular cones
 - NJ: V^0s in event w/o jet in $p_T>5\text{GeV/c}$
 - OC: V^0s outside matching cone

- PC used as the default UE estimator, NJ and OC are used for estimating uncertainty on underlying event subtraction

Jet cone
jet axis
charged primary particles

\[\sqrt{(\eta_{V^0} - \eta_{\text{jet}})^2 + (\varphi_{V^0} - \varphi_{\text{jet}})^2} < R \]
Correction

- **Efficiency of V^0s**
 - Efficiency depends on η
 - η distribution of V^0s in jets is different from that of inclusive V^0s

![Graph showing efficiency and ratio](image)

- An η weighted method used to correct the efficiency in jets and UE.
- The η weighted efficiency for V^0s in jets are higher than inclusive V^0s in lower p_T, and consistent in high p_T
- The η weighted efficiency or V^0s in UE is constant with Inclusive V^0s

- **Feeddown correction for Λ from Ξ**
 - Secondary V^0s in jet cone have been corrected after underlying event subtraction
 - The difference between the feed down fraction from Inclusive V^0s in data and that of V^0s in jets is taken as uncertainty(3%)
Systematic uncertainty estimation

- Uncertainty consists of V^0 reconstruction, jet p_T scale, Underlying subtraction and Feeddown subtraction.
- Systematic uncertainties for V^0 yield in jets is less than 18%, UE subtraction dominates at lower p_T, V^0 reconstruction dominates at higher p_T.
- The systematic uncertainty of L/K ratio is nearly 11%.