

Office of Science

The x and scale dependence of \hat{q}

Abhijit Majumder Wayne State University

Hard Probes 2016, Wuhan, China Sept 23-28

Validity at high resolution, transport coefficients for near on-shell partons $p^+ \simeq p_\perp^2 / 2p^$ $p_z^2 \simeq E^2 - p_\perp^2$

Notion of transport coefficient valid in the regime of $\mu >> \Lambda_{QCD}$

A hierarchy of scales: $Q \gg \mu \gg \Lambda_{QCD}$

Many things happen to a jet and the energy deposited by the jet

Many things happen to a jet and the energy deposited by the jet

> See talk by M. Kordell other talks in MC session

Many things happen to a jet and the energy deposited by the jet

> This talk will only focus on leading hadrons

See talk by M. Kordell other talks in MC session

In all calculations presented bulk medium described by viscous fluid dynamics

Medium evolves hydro-dynamically as the jet moves through it Fit the \hat{q} for the initial T in the hydro in central coll.

From RHIC to LHC circa 2012

Reasonable agreement with data, no separate normalization at LHC Without any non-trivial x-dependence (E dependence)

Results from the JET collaboration

K. Burke et al.

Do separate fits to the RHIC and LHC data for maximal \hat{q} without assuming any kink in the \hat{q} vs T³ curve

If this is true, must effect the centrality dependence of R_{AA} , v_2 , and its centrality dependence at a given collision energy

LHC R_{AA} without a bump in \hat{q}/T^3

v_2 at LHC without a bump in \hat{q}/T^3

v_2 at RHIC without a bump in \hat{q}/T^3

Calculating \hat{q} with more care

$$W(k) = \frac{g^2}{2N_c} \langle q^-; M | \int d^4x d^4y \bar{\psi}(y) \ \mathcal{A}(y)\psi(y)$$

$$\times |q^- + k_{\perp}; X \rangle \langle q^- + k_{\perp}; X |$$

$$\times \bar{\psi}(x) \ \mathcal{A}(x)\psi(x) |q^-; M \rangle$$
in Lemma 6 We want $\hat{q} = \sum k^2 \frac{W(k)}{2k}$

Ч

k

)

t

in terms of W, we get

Final state is close to ``on-shell''

$$\delta[(q+k)^2] \simeq \frac{1}{2q^-} \delta\left(k^+ - \frac{k_\perp^2}{2q^-}\right)$$

Also we are calculating in a finite temperature heat bath

$$\hat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y}_\perp}}{\langle n|F^+, \downarrow (y^-, \vec{y}_\perp)F_\perp^+(0)|n\rangle}$$
$$\hat{q}(q^+, q^-) \qquad \qquad 2q^-q^+ = Q^2, \ \frac{k_\perp^2}{2q^-} = xP^+$$

Can evaluate on Lattice, see talk by C. Nonaka

What one usually does at this point

• Take the q⁻ to be infinity

$$\hat{q} \sim \int \frac{dy^{-} d^{2} y_{\perp}}{(2\pi)^{3}} d^{2} k_{\perp} e^{i\vec{k}_{\perp} \cdot \vec{y}_{\perp}} \langle n | F^{+}_{\perp} (y^{-}, \vec{y}_{\perp}) F^{+}_{\perp} (0) | n \rangle$$

$$= \int \frac{dy^{-}}{2\pi} \langle n | F^{+,}{}_{\perp}(y^{-}) F^{+}_{\perp}(0) | n \rangle$$

This makes \hat{q} into a one dimensional quantity an assumption of small x or high E.

q at vanishing x has been taken to NLO

Z. Kang, E. Wang, X.-N. Wang, H. Xing, PRL 112 (2014) 102001

T. Liou, A. Mueller, B. Wu, Nucl.Phys. A916 (2013) 102-125

J. Blaizot, Y. Mehtar-tani, arXiv:1403.2323 [hep-ph]

E. Iancu, arXiv:1403.1996 [hep-ph]

None of these NLO corrections have been tested in phenomenology.

What is x for a QGP $x_B = \frac{Q^2}{2p \cdot Q}$ • Bjorken x in DIS on a proton • In rest frame of proton $x_B = \frac{Q^2}{2E \cdot M} = \frac{\eta}{M}$ • In the PDF $f(x_B) = \int \frac{dy^-}{2\pi} e^{ix_B P^+ y^-} \langle P | \bar{\psi}(y^-) \frac{\gamma^+}{2} \psi | P \rangle$ $g(\eta) = \int \frac{dy^{-}}{2\pi} e^{i\eta y^{-}} \langle P|\bar{\psi}(y^{-})\frac{\gamma^{+}}{2}\psi|P\rangle$

In the rest frame of the proton, $x \sim \eta$

We can compare η values between DIS and heavy-ions

How about x or η dependence of \hat{q}

 The Glauber condition prevents a direct application of this established procedure.

 $\delta\left(k^+ - \frac{k_\perp^2}{2q^-}\right)$

forces the incoming lines off-shell

q is a 3-D object depending on x, \underline{k}_T Like a TMDPDF, at large \underline{k}_T can *refactorize* to

regular PDF X radiated gluon Contributions start at order α_{S} ,

A factorized picture

A factorized picture

Q is the hard scale of the jet ~ E Q λ is a semi-hard scale ~ (ET)^{1/2}, $\lambda \rightarrow 0$ \hat{q} contains all dynamics below Q λ

A factorized picture

Q is the hard scale of the jet ~ E Q λ is a semi-hard scale ~ (ET)^{1/2}, $\lambda \rightarrow 0$ \hat{q} contains all dynamics below Q λ

Input PDF at $Q^2 = 1 \text{ GeV}^2$

<u>Sea-like</u> PDF of the QGP

Narrow valence like PDF of QGP

Wide valence like PDF of the QGP

What does this mean?

- Possible resolution of the JET puzzle
- Based on consistent Q² evolution of q
- Should have x evolution at high energy
- Will be done in reverse very soon, will get PDF's with bands (by Quark Matter !!!)
- Applying TMD systematics, may complicate this interpretation.

Near side and away side correlations

A wide range of single particle observables can be explained by a weak coupling formalism