Measurement of azimuthal flow of soft and high-p_T charged particles in 5.02 TeV Pb+Pb collisions with the ATLAS detector

Klaudia Burka on behalf of the ATLAS Collaboration

25.09.2016

Motivation

Azimuthal anisotropy

- Quark Gluon Plasma (QGP) produced and probed in heavy ion collisions
- Signatures of QGP: collective expansion, jet quenching, etc.

Study QGP properties

- Particle azimuthal distribution
- Two/multi particle correlations

Singles:
$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos[n(\phi - \Psi_n)]$$
Pairs: $\frac{dN}{d\Delta\phi} \propto 1 + \sum_{n} 2v_n^a v_n^b \cos[n(\Delta\phi)]$

• Azimuthal anisotropy results from different pressure gradients in different spatial directions

Pb+Pb@2.76 TeV – results from Run-1

- \diamond v_n harmonics measured with Event Plane method
 - $p_{T} = 0.5 20 \text{ GeV}$
 - | η | < **2.5**
 - centrality 0-80%
- Flow depends on centrality
 - Biggest asymmetry observed in midcentral events (30-50%)

\rightarrow Non-zero v_n observed up to n=6

- \diamond Two particle η / ϕ correlations revealed ridge and doublehump structures
- \diamond v_{n.n} expansion parameters factorize to single particle ones, meaning they come from harmonic flow

Klaudia Burka - Hard Probes 2016

Datasets

ATLAS detector $\rightarrow v_n$ measurement

ATLAS detector $\rightarrow v_n$ measurement

Analysis procedures

Scalar Product (SP)

 \diamond Flow vector: $Q_n = |Q_n|e^{in\Psi_n} = rac{1}{S}\sum_j q_{n,j} = rac{1}{S}\sum_j w_j e^{in\phi_j}$

- Flow vectors are measured in sub-events
 - FCal N and FCal P → Sum over calorimeter towers

• ID \rightarrow sum over charged tracks

$$v_n\{SP\} = \frac{\langle |q_{n,j}| |Q_n^N|^P |\cos[n(\phi_j - \Psi_n^N|^P)] \rangle}{\sqrt{\langle |Q_n^N| |Q_n^P| \cos[n(\Psi_n^N - \Psi_n^P)] \rangle}}$$

♦ Large eta gap ($| \eta | > 3.2$) to suppress short-range correlations

- \diamond Scalar Product: unambiguous measurement of $v_n \rightarrow$ always RMS v_n
- Event Plane: used only to compare to Run-1 results
 - Obtained by Q vectors normalization

Two-particle correlations (2PC)

 $\diamond\,$ Measure pair distributions in ($\Delta\,\eta$, $\Delta\,\phi$)

$$C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)} \xrightarrow{\text{signal}} \text{background}$$

- Project S($\Delta \eta$, $\Delta \phi$) and B($\Delta \eta$, $\Delta \phi$) to $\Delta \phi$ axis for | $\Delta \eta$ | > 2
 - Remove short range correlations: resonance decays, jet fragmentation etc.

A Divide: S(∆ φ)/B(∆ φ) to obtain correlation 1.02
 function C(∆ φ)
 $C(\Delta \phi) = C_0 \left(1 + \sum_{n=1}^{\infty} v_{n,n}(p_T^a, p_T^b) \cos(n\Delta \phi)\right)$

 \diamond Obtain v_n from v_{n,n} using factorization:

 $v_{n,n}(p_{\mathrm{T}}^a,p_{\mathrm{T}}^b)=v_n(p_{\mathrm{T}}^a)v_n(p_{\mathrm{T}}^b)$

 $2 < p_{\tau}^{a,b} < 3 \text{ GeV}$ **ATLAS** Preliminary $\sqrt{s_{NN}}$ =5.02 TeV, 22 µb⁻¹ (0-5)% Pb+Pb 1.04 0.98 -2 2́ ÿ 20 2 ATLAS Preliminary (0-5)% 2<|∆η|<5 Pb+Pb $\sqrt{s_{NN}}$ =5.02 TeV, 22 µb⁻¹ 2<p__^a,b<3 GeV 0 2 $\Delta \phi$

Results

SP Results I: $v_n(p_T)$ dependence

central

v_n measured up
to p_T = 25 GeV

 \diamond

v₂ is dominant and remains positive at high p_T

Flow harmonics measured for n = 2-7

2PC Results I: v_n (p_T) dependence

SP Results II: $v_n(\eta)$ dependence

- \diamond Flow harmonics integrated over narrow p_T intervals:
 - $p_{T} = 0.5 0.6 \text{ GeV}$ and $p_{T} = 2 3 \text{ GeV}$

\diamond All harmonics show very weak η – dependence

In mid-central collisions the integrated v_n over p_T range from 2 to 3 GeV is higher by about 10% in $\eta \approx 0$ compared $\eta \approx \pm 2.5$

SP Results III: v_n centrality dependence

v_n dependence on centrality intervals

Integrated over narrow p_T intervals as well as the whole p_T range

The biggest asymmetry observed in mid-central collisions (30-50 %)

- elliptic flow is dominant asymmetry, except for the most central bin 0-5%
- \diamond Measurement of v₇ for the first time
 - v₇ is most significant for 10-40% interval

2PC – SP: Methods comparison

Soth, 2PC and SP, methods are based on two particle correlations

- In 0-5% interval the SP method gives consistently higher values for v₂
- For more peripheral collisions v_2 {SP} and v_2 {2PC} match within 2-5%
- Similar trend is observed for n > 2

SP vs EP: Methods comparison

- EP results obtained from SP by Q-vector normalization
 - SP measure always RMS v_n
 - EP measure value between <v_n> and RMS v_n

\diamond A small difference is seen for v₂

- Largest for mid-central 20-50% interval → ~3%
- For n > 2 the EP and SP results are consistent

2PC Results: Run-1 – Run-2 comparison

- 2PC shows overall good agreement between results obtained with different system energies
 - Within statistical and systematic uncertainties
- Consistent with recent ALICE results (PRL 116 (2016) 132302)

EP results: Run-1 – Run-2 comparison

 EP methods shows overall good agreement between results obtained with different system energies

- Within statistical and systematic uncertainties
- Consistent with recent ALICE results (PRL 116 (2016) 132302)

Summary

- The first ATLAS measurement of azimuthal anisotropy of charged particles in Pb+Pb collisions at 5.02 TeV using LHC Run-2 data
- The flow harmonics, v_n, are measured using two methods, SP and 2PC:
 - n=2-7
 - wide $p_T = 0.5 25$ GeV range
 - | η | < 2.5
 - centrality 0-80%
- \diamond The first measurement of v₇ harmonic
- Significant v₂ even at highest p₁
- \diamond The v_n show weak η dependence
- \diamond The v_n(p_T) values do not change from 2.76 TeV to 5.02 TeV

Backup slides

systematic	n hormonio	5 - 10 %		50 - 60 %		
sources	II narmonic	0.5 - 0.6 GeV	9 - 10 GeV	0.5 - 0.6 GeV	9 - 10 GeV	
	v_2	5 (5)	0.2 (0.3)	0.1 (0.1)	0.3 (0.3)	
	v_3	6 (6)	0.2 (0.2)	0.2 (0.1)	3 (2)	
tracking	U 4	6 (6)	0.4 (0.2)	3 (3)	1 (3)	
cuts	<i>v</i> ₅	7 (9)	0.2 (1)	2 (2)	3 (2)	
	v_6	14 (17)	1 (3)	3 (6)	3 (6)	
	v7	2 (12)	9 (3)	6 (26)	6 (26)	
	<i>v</i> ₂	0.2 (0.2)	<0.1 (<0.1)	0.2 (0.2)	<0.1 (<0.1)	
	<i>v</i> ₃	0.2 (0.2)	0.2 (<0.1)	0.3 (0.3)	0.7 (0.5)	
a ff all an arr	v_4	0.3 (0.3)	0.2 (0.3)	0.3 (0.2)	0.7 (0.5)	
emciency	v_5	0.2 (0.2)	< 0.1 (0.2)	0.2 (0.2)	1 (3)	
variation	v_6	5 (17)	11 (2)	5 (6)	0.9 (2)	
	v7	3 (3)	0.1 (0.4)	2 (4)	2 (2)	
	<i>U</i> 2	0.8 (0.7)	<0.1 (<0.1)	0.2 (0.1)	0.3 (<0.1)	
	<i>v</i> ₃	1(1)	0.5 (0.3)	0.6 (0.5)	1 (0.5)	
n	V4	1(1)	0.4 (0.9)	2 (5)	4 (9)	
symmetry	U5	2 (2)	3 (5)	4 (4)	3 (3)	
-,,	V6	10(7)	4 (4)	11 (7)	11 (7)	
	Un Un	11 (15)	11 (15)	15 (1	12)	
	<i>U</i> 2	1(1)	1(1)	0.5 (0.3)	1(1)	
	1/2	0.2 (0.2)	0.2(<0.1)	0.3 (0.3)	0.7(0.5)	
	14	< 0.1 (< 0.1)	0.2((0.1))	1 (3)	0.8 (3)	
centrality	104	2 (2)	0.4(0.7)	4 (4)	2(1)	
contrainty	05	2(2)	2(2)	(+)	2(1)	
	00	11 (7)	2(2) 8(7)	2(3)	$\frac{2}{4}(3)$	
_	07	11(7)	$\frac{0}{0}$	4 (4)	(4)	
	02	0.2(0.2)	1(1)	0.4 (0.5)	1(0.4)	
mani du al	03	0.3 (0.3)	1(1)	2(2)	1(0.4)	
residual	<i>v</i> ₄	1(2)	0.7(1)	0.2 (3)	0(4)	
sine term	v_5	3 (4)	0.1(3)	11 (13)	11 (4)	
	v_6	3 (11) 17 (21)		21 (31)	21 (31)	
	<i>v</i> 7	34 (26)		35 (43)		
	v_2	2 (2)	1(1)	0.3 (<0.1)	1(1)	
	v_3	2 (3)	2(1)	14 (14)	11 (11)	
MC	v_4		0.5 (1)	40-50%		
closure		4 (4)		1 (3) 5 (9)		
				10-2	0%	
	v_5	3 (7)	14 (21)	8 (7)	2 (3)	
	v_6	-	-	-	-	
	<i>v</i> 7	-	-	-	-	
	v_2	0.1 (0.4)	0.7 (1)	0.1 (<0.1)	2 (0.6)	
residual	v_3	1 (2)	2 (2)	0.3 (2)	8 (10)	
FCal	v_4	2 (3)	4 (6)	3 (2)	0.1 (6)	
mis-	v_5	8 (6)	<0.1 (4)	5 (8)	2 (3)	
calibration	v_6	17 (5)	5 (17)	28 (3)	28 (3)	
	v_7	34 (13)	34 (13)	34 (13)	34 (13)	

SP/EP systematics summary table

2PC systematics summary table

	systematic	n hormonio	5 - 10 %		50 - 60 %	
	sources	II marmonic	0.5-0.6 GeV	6-8 GeV	0.5-0.6 GeV	6-8 GeV
		v_2	8	3	1	1
		<i>v</i> ₃	8	3	1	2
	tracking	v_4	11	4	3	4
	cuts	v_5	16	5	4	5
		v_6	16	8	4	8
		v_2	0.2	<0.1	0.2	<0.1
		v_3	0.2	0.2	0.3	0.7
	efficiency variation	v_4	0.3	0.2	0.3	0.7
		v_5	0.2	<0.1	0.2	1.0
		v_6	4.8	11	4.2	0.9
		v_2	1	1	1.5	< 0.5
		v_3	0.5	0.5	3	10
		v_4	0.5	0.5	3	10
	centrality	v_5	0.5	0.5	3	10
		v_6	0.5	0.5	3	10
		v_2	6	3	3	1
		v_3	6	3	3	1
	MC closure	v_4	5	5	5	5
		v_5	6	6	6	6
		v_6	10	10	10	10
		v_2	1	1	1	1
		<i>v</i> ₃	1	2	1	4
	event-	v_4	5	6	3	6
	mixing	v_5	5	10	5	10
		v_6	50	15	50	15

SP/EP methods

Scalar Product:

$$v_{n,j}\{SP\} = Re\frac{\langle q_{n,j}Q_n^{N|P*}\rangle}{\sqrt{\langle Q_n^NQ_n^{P*}\rangle}} = \frac{\langle |q_{n,j}||Q_n^N|^P|cos[n(\phi_j - \Psi_n^N)]\rangle}{\sqrt{\langle |Q_n^N||Q_n^P|cos[n(\Psi_n^N - \Psi_n^P)]\rangle}}$$

Event Plane:

$$v_{n,j}\{EP\} = Re \frac{\langle q_{n,j} \frac{Q_n^{N|P*}}{|Q_n^N|P|} \rangle}{\sqrt{\langle \frac{Q_n^N}{|Q_n^N|} \frac{Q_n^{P*}}{|Q_n^P|} \rangle}} = \frac{\langle cos[n(\phi_j - \Psi_n^N|P)] \rangle}{\sqrt{\langle cos[n(\Psi_n^N - \Psi_n^P)] \rangle}}$$