

Energy flow in gamma-jets and dijet events in heavy-ion collisions

Tan Luo

Central China Normal University Institute of Particle Physics

In collaboration with Shanshan Cao, Wei Chen, Yayun He, Longgang Pang, Enke Wang, Xin-Nian Wang, and Yan Zhu

- Introduction
- Jet propagation within a Linearized Boltzmann Transport (LBT) model
- Gamma-jets and Dijet in heavy-ion collisions
- Summary and Outlook

Introduction

The jet shape and transverse momentum imbalance in **Dijet** events

Boltzmann Equation:

Jet-induced medium partons in LBT Model

$$p_{1} \cdot \partial f_{1}(p_{1}) = -\int dp_{2}dp_{3}dp_{4}(f_{1}f_{2} - f_{3}f_{4})|M_{12 \to 34}|^{2}$$

$$\times (2\pi)^{4}\delta^{4}(P_{1} + P_{2} - P_{3} - P_{4}) + \text{radiation}$$

$$dp_{i} \equiv \frac{d^{3}p_{i}}{2E_{i}(2\pi)^{3}}, \quad \text{Complete set of 2-2 processes}$$

$$f_{i} = 1/(e_{i}^{p.u/T} \pm 1)(i = 2, 4), f_{i} = (2\pi)^{3}\delta^{3}(\vec{p} - \vec{p}_{i})\delta^{3}(\vec{x} - \vec{x}_{i})(i = 1, 3)$$

Linearized Boltzmann jet transport

7

60000000

4

Elastic collision + Induced gluon radiation.

Follow the propagation of recoiled parton

Include recoiled parton in jet reconstruction

Jet-induced medium partons

Medium Excitation

Global energy momentum conservation

$$\frac{dNg}{dxdk_{\perp}^{2}dt} = \frac{2C_{A}\alpha_{s}P(x)\hat{q}}{\pi k_{\perp}^{4}}\sin^{2}\frac{t-t_{i}}{2\tau_{f}}$$
$$\tau_{f} = 2Ex(1-x)/k_{\perp}^{2} \qquad P(N_{g},\langle N_{g}\rangle) = \frac{\langle N_{g}\rangle^{N_{g}}e^{-\langle N_{g}\rangle}}{N_{g}!}$$

Total energy momentum

Xin-Nian Wang, Yan Zhu Phys.Rev.Lett. 111, 062301

X. Guo, X. Wang Nucl.Phys. A696 (2001) 788-832

Energy distribution of the radiated gluon

Jet induced medium excitation

Elastic only

Elastic + Radiation

Jets in a 3+1D hydro

- 3+1D Ideal hydro Longgang Pang, Qun Wang, Xin-Nian Wang Phys.Rev. C86 (2012) 024911
- Location of gamma-jet is decided according probability of binary collision.

Recoiled effect in the reconstructed jets

Asymmetry distribution of gamma-jets in heavy-ion collisions

• fix the parameter α_s via the comparison with the γ -jet asymmetry

Azimuthal distribution of gamma-jets in heavy-ion collisions

Azimuthal distribution of gamma-jets in heavy-ion collisions

5.02TeV

 $|\eta_{\gamma}| < 1.44, P_{Tjet} > 30GeV, |\eta_{jet}| < 1.6$

Asymmetry distribution of gamma-jets in heavy-ion collisions

pT distribution of gamma-jets in heavy-ion collisions

0.025

0.02

0.015

0.01

0.005

-pp

 $\frac{dN_{J\gamma}}{dp_{-}T^{Jet}}(GeV^{-1})$

-z

 $P_T \gamma > 80 GeV$

0-30%

2.76TeV

-pp: CMS data

- PbPb 0-30%

PbPb: CMS data

Path length dependence of the energy loss

5.02TeV

Energy flow in gamma-jets events

Energy flow in gamma-jets events

Energy flow in dijet events

Jet shape of leading jet in heavy-ion collisions

Jet shape of subleading jet in heavy-ion collisions

Jet shape of gamma-jets in heavy-ion collisions

pT imbalance of dijet in heavy-ion collisions

Summary

 We present a computation of gamma-jets and Dijet in QGP within the Linear Boltzmann Transport model in which both the elastic and inelastic process are included.

Outlook

 Hadron jet and Heavy quark jet (with the recombination model developed by Texas A&M group) Shanshan's talk in the morning

Beyond LBT model (modified medium background)

CoLBT-Hydro model (A coupled LBT Hydro (3+1D) Model)

Wei Chen's talk in the last session

Yasuki's talk tomorrow

Thanks

Gamma-jets in a 3+1D hydro

• 3+1D Ideal hydro Longgang Pang, Qun Wang, Xin-Nian Wang Phys.Rev. C86 (2012) 024911

- Location of gamma-jet is decided according probability of binary collision.
- Small difference between parton-jet and hadron-jet.

Nontrivial path length dependence on parton energy loss

