Gamma-jet correlations in 5.02 TeV Pb+Pb collisions by ATLAS

Prof. Brian A. Cole
for the ATLAS collaboration

Hard Probes 2016 Conference
May 23, 2016

ATLAS-CONF-2016-110 (via https://twiki.cern.ch/twiki/bin/view/AtlasPublic)
ATLAS probes of jet quenching

ATLAS
2011 Pb+Pb data, 0.14 nb⁻¹
\(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)
\(L_{int} = 0.14 \text{ nb}^{-1} \)

ATLAS
anti-\(k_T \), \(R = 0.4 \) jets

ATLAS
0-10% 10-20% 20-40% 40-50% 50-60%

ATLAS
E_{T,nbr} > 30 GeV 0.8 < \Delta R < 1.6

ATLAS
E_{T,nbr} > 45 GeV 0.8 < \Delta R < 1.6

ATLAS
E_{T,nbr} > 60 GeV 0.8 < \Delta R < 1.6
ATLAS probes of jet quenching

Jet R_{AA}

- Anti-k_t $R = 0.4$ jets
- 2011 Pb+Pb data, 0.14 nb$^{-1}$
- 2013 pp data, 4.0 pb$^{-1}$

p_T [GeV]

| $|y| < 2.1$ |
| $0 - 10\%$ | $30 - 40\%$ | $60 - 80\%$ |

| $0.3 < |y| < 0.8$ |
| $|y| < 2.1$ |

| $1.2 < |y| < 2.1$ |
ATLAS probes of jet quenching

- Modified jet fragmentation
ATLAS probes of jet quenching

- Dijet asymmetry (unfolded)
ATLAS probes of jet quenching

- Small-angle jet pairs

\[\rho_{R,\Delta R} \]

ATLAS
Pb+Pb 2011
\[\sqrt{s_{NN}} = 2.76 \text{ TeV} \]
\[L_{\text{int}} = 0.14 \text{ nb}^{-1} \]

- \(E_T^{\text{nbr}} > 30 \text{ GeV} \)
 - anti-\(k_t \), \(d = 0.4 \)
 - \(0.8 < \Delta R < 1.6 \)

- \(E_T^{\text{test}} > 45 \text{ GeV} \)
 - anti-\(k_t \), \(d = 0.4 \)
 - \(0.8 < \Delta R < 1.6 \)

- \(E_T^{\text{test}} > 60 \text{ GeV} \)
 - anti-\(k_t \), \(d = 0.4 \)
 - \(0.8 < \Delta R < 1.6 \)

Saturday, September 24, 16
ATLAS probes of jet quenching

- ATLAS
- Pb+Pb data, 0.14 nb⁻¹
- \(\sqrt{s_{NN}} = 2.76 \) TeV

- ATLAS Preliminary
- Pb+Pb data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)

- ATLAS
- Pb+Pb 2011 data, 0.14 nb⁻¹
- \(|y| < 2.1 \)
1st Run 2 Pb+Pb jet result: Gamma-Jet

Data collected in Nov. - Dec. 2015:

- $\sqrt{s_{\text{NN}}} = 5.02$ TeV Pb+Pb, $\int \mathcal{L} dt = 0.52$ nb$^{-1}$
- $\sqrt{s} = 5.02$ TeV pp, $\int \mathcal{L} dt = 26$ pb$^{-1}$

Using photon triggers that sampled full luminosity

\Rightarrow 38 k photons with $60 < p_T < 150$ in pp data
\Rightarrow 29 k " " " in Pb+Pb, 0-50%
1st Run 2 Pb+Pb jet result: Gamma-Jet

- Data collected in Nov. - Dec. 2015:
 - $\sqrt{s_{NN}} = 5.02$ TeV Pb+Pb, $\int \mathcal{L} dt = 0.52$ nb$^{-1}$
 - $\sqrt{s} = 5.02$ TeV pp, $\int \mathcal{L} dt = 26$ pb$^{-1}$

- Using photon triggers that sampled full luminosity
 - $\Rightarrow 38$ k photons with $60 < p_T < 150$ in pp data
 - $\Rightarrow 29$ k " " " " in Pb+Pb, 0-50%
• Usual centrality analysis using two-component model, but applied over 0-85% centrality range
 ⇒ Avoids complications with photo-nuclear, electromagnetic backgrounds in peripheral Pb+Pb

• For this analysis:
 ⇒ 0-10%, 10-20%, 20-30%, 30-50% intervals
• ATLAS measurement of prompt, isolated photon production in 2.76 TeV Pb+Pb collisions
 – compared to JETPHOX with & without isospin, EPS09
 ⇒ Good agreement when isospin included in Jetphox
 ⇒ Similar methods, systematics for Run 2 photon analysis
Photon identification

- Candidate photons obtained from clusters in EM calorimeter with shower shape cuts applied
Photon identification

- Candidate photons obtained from clusters in EM calorimeter with shower shape cuts applied
 - Additional isolation requirement based on E_T within $R = 0.3$ cone around candidate photon
Photon identification

• Candidate photons obtained from clusters in EM calorimeter with shower shape cuts applied
 – Additional isolation requirement based on E_T within $R = 0.3$ cone around candidate photon
 ⇒ Compare isolation distributions for clusters that pass “tight” and “non-tight” selections
Photon identification

• Candidate photons obtained from clusters in EM calorimeter with shower shape cuts applied
 – Additional isolation requirement based on E_T within $R = 0.3$ cone around candidate photon
 ⇒ Compare isolation distributions for clusters that pass “tight” and “non-tight” selections

 • Photon purity (data driven) $\geq 70\%$ in Pb+Pb data
 ⇒ subtracted using sideband method (below)
Gamma-Jet jet energy scale

- Heavy ion jet reconstruction energy scale:
 - Calibrated using 5.02 TeV pp MC
 => POWHEG
- Apply 13 TeV pp "in-situ" correction
 - Corrects for data-MC differences
- Apply 5.02 - 13 TeV "cross-calibration"
 - Transfer jet energy scale systematic uncertainties
- Test in 5.02 TeV pp data using gamma-jet events
Gamma-jet Jet performance

- MC: PYTHIA8 + data overlay evaluation of jet performance in γ-jet events
 - Jet energy resolution ↑ due to underlying event fluctuations
 - Jet efficiency ↓ due to increased JER
 ⇒ ~ entirely due to jets falling below minimum p_T cut

- Jets in gamma-jet events have p_T corrected for flavor-dependent JES offset (previous slide)
The measurement

• Measure γ-jet p_T balance: $x_j \equiv p_T^{\text{jet}} / p_T^\gamma$

– And γ-jet acoplanarity ($\Delta \varphi$) distribution
The measurement

• Measure γ-jet p_T balance: $x_j \equiv \frac{p_T^{\text{jet}}}{p_T^\gamma}$
 – And γ-jet acoplanarity ($\Delta\varphi$) distribution

• For three bins in photon p_T:
 \Rightarrow 60–80 GeV, 80–100 GeV, 100–150 GeV
 $\Rightarrow |\eta_\gamma| < 2.37$ but also excluding $1.37 < |\eta_\gamma| < 1.52$.
The measurement

• Measure γ-jet p_T balance: $x_j \equiv p_T^{\text{jet}} / p_T^\gamma$
 – And γ-jet acoplanarity ($\Delta\varphi$) distribution

• For three bins in photon p_T:
 ⇒ 60–80 GeV, 80–100 GeV, 100–150 GeV
 ⇒ $|\eta_\gamma| < 2.37$ but also excluding $1.37 < |\eta_\gamma| < 1.52$.

• Using $R = 0.4$ anti-k_T jets
 – iterative background subtraction a la Run 1
 – accounting for v_2 in underlying event
 ⇒ $p_T^{\text{jet}} > 30$ GeV, $|\eta_{\text{jet}}| < 2.1$
The measurement

• Measure γ-jet p_T balance: $x_j \equiv p_{T,jet}^\gamma / p_T^\gamma$
 – And γ-jet acoplanarity ($\Delta \varphi$) distribution

• For three bins in photon p_T:
 \Rightarrow 60–80 GeV, 80–100 GeV, 100–150 GeV
 $\Rightarrow |\eta_\gamma| < 2.37$ but also excluding $1.37 < |\eta_\gamma| < 1.52$.

• Using $R = 0.4$ anti-k_T jets
 – iterative background subtraction a la Run 1
 – accounting for v_2 in underlying event
 $\Rightarrow p_{T,jet} > 30$ GeV, $|\eta_{jet}| < 2.1$

• Inclusive measurement with $\Delta \varphi$ selection
 – include all jets in γ-jet events
 \Rightarrow straightforward combinatoric subtraction
 – For x_j measurement, require $\Delta \varphi > 7\pi/8$
Multiple hard scattering + UE fluctuations produce jets uncorrelated with γ-jet hard scattering

- Measure combinatoric rate using MC data overlay
 ⇒ The underlying events are minimum-bias Pb+Pb
- Subtract differentially in Δφ, \(p_T^{\text{jet}} \)

Also subtract background pairs via photon sideband

⇒ Shown above: yield for Δφ > 7\(\pi/8 \)
Gamma-Jet in 5.02 TeV pp collisions

- Comparing data (measured) to PYTHIA8 + GEANT (reconstructed)

 ⇒ Top: $1/N_\gamma$ dN/dx_j

 ⇒ Bottom: $1/N_{\text{pair}}$ dN/d $\Delta\phi$

- Important: PYTHIA8 sample does not include frag. photon contribution
• Start with 0-10% centrality bin:
 – solid points in the figure
 – systematic uncertainties from:
 ⇒ Jet energy scale uncertainties (pp & Pb+Pb)
 ⇒ Jet energy resolution uncertainties
 ⇒ photon purity, combinatoric subtraction
• Start with 0-10% centrality bin:
 – Compare measured, background-subtracted $1/N_\gamma dN/dx_j$ for inclusive pairs with $\Delta \varphi > 7\pi/8$.
 – to PYTHIA8+GEANT + Pb+Pb data overlay
• Start with 0-10% centrality bin:
 – Compare measured, background-subtracted $1/N_\gamma \frac{dN}{dx_j}$ for inclusive pairs with $\Delta \phi > 7\pi/8$.
 – to PYTHIA8+GEANT + Pb+Pb data overlay
 – and to 5.02 TeV pp data (previous slide)
Gamma-Jet in 5.02 TeV Pb+Pb collisions

- Start with 0-10% centrality bin:
 - Compare measured, background-subtracted $1/N_\gamma dN/dx_j$ for inclusive pairs with $\Delta\phi > 7\pi/8$.
 - to PYTHIA8+GEANT + Pb+Pb data overlay
 - and to 5.02 TeV pp data (previous slide)

⇒ See clear modification (downward shift) in central Pb+Pb due to energy loss of balance jets
Gamma-Jet in 5.02 TeV Pb+Pb collisions

• Centrality dependence for two photon p_T ranges
 – Left: 60–80 GeV, right: 80–100 GeV
 ⇒ Observe a smaller shift in less central collisions
 ⇒ At higher p_T, can see evolving peak + lower x_j contribution
Gamma-Jet in 5.02 TeV Pb+Pb collisions

- Centrality dependence for two photon p_T ranges
 - Left: 80–100 GeV, right: 100–150 GeV
 - Observe a smaller shift in less central collisions
 - At higher p_T, can see evolving peak + lower x_j contribution
• Look at $\Delta \phi$ distribution for 0-10% centrality
 – $p_T^{jet} > 50$ GeV to limit combinatoric contribution
 – compare to PYTHIA8 + GEANT + data overlay, pp data

\Rightarrow same disagreement with PYTHIA8 as seen for pp

\Rightarrow agreement between 0-10% Pb+Pb and pp
Summary and Conclusions

• ATLAS has measured gamma-jet correlations in 5.02 TeV pp and Pb+Pb collisions
 ⇒ $\int \mathcal{L} dt = 26 \text{ pb}^{-1}, 0.52 \text{ nb}^{-1}$, respectively

• Jets reconstructed using anti-k_t with $R = 0.4$
 ⇒ heavy ion jet algorithm with underlying event subtraction and v_2 flow correction
 ⇒ full set of jet energy scale corrections and uncertainties propagated from 13 TeV pp data

• Measured distributions (no unfolding):
 – $1/N_\gamma dN/dx_j$ for $\Delta\varphi > 7\pi/8$ and $1/N_{\text{pair}} dN/d \Delta\varphi$
 – compared to PYTHIA8 + GEANT + PbPb overlay

• See data-PYTHIA8 agreement for pp x_j distribution
 ⇒ In Pb+Pb collisions see clear quenching effects

• See data-PYTHIA8 disagreement for pp $\Delta\varphi$ distribution
 ⇒ Pb+Pb and pp $\Delta\varphi$ dist’s agree within uncertainties