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Physics motivation

Goal: study interaction of jets with the medium
Angular correlation measurements

Analysis done on a statistical basis
Subtraction of large fluctuating background possible
Low pT measurement possible
Complementary tool to jet reconstruction

Interactions would appear as modification of the near-side peak
Modification of the jet-peak has been seen by STAR
STAR Collaboration, Phys. Rev. C85 (2012) 014903
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Theoretical aspects
Larger width in ∆η than in ∆ϕ

Interaction with longitudinal flowing medium
Romatschke, Phys. Rev. C75 (2007) 014901
Armesto, Salgado, Wiedemann, Phys. Rev. C72 (2005) 064910
Armesto, Salgado, Wiedemann, PRL 93,242301 (2004)

Interaction with turbulent color fields
Majumder, Muller, Bass, Phys. Rev. Lett. 99 (2007) 042301

Double hump-shape in the energy distribution of the jet
Armesto, Salgado, Wiedemann – PRL 93,242301 (2004)
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Analysis strategy

Pb–Pb and pp data at√
sNN = 2.76 TeV

Trigger and associated particle
taken in certain pT window
Associated yield per trigger:

1
Ntrig

d2Nassoc

d∆ηd∆ϕ = S(∆η,∆ϕ)
B(∆η,∆ϕ)

ITS

TPC

V0

(∆ϕ, ∆η)
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Evolution of the near-side peak shape
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Histograms background subtracted for illustration
Shape is similar in pp and peripheral collisions
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Evolution of the near-side peak shape
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Peak: broader and asymmetric in central collisions
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Evolution of the near-side peak shape
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Histograms background subtracted for illustration
Depletion around (∆ϕ,∆η) = (0,0) in central collisions at low pT

Monika Kofarago Near-side jet peak broadening in Pb-Pb collisions 5 / 18



Evolution of the near-side peak shape
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Histograms background subtracted for illustration
Peak is narrower at high pT
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Fitting technique

The near-side is fitted to characterize its shape evolution
Fit function: background + Generalized Gaussian

Background:
C1 +

∑4
n=2 2Vn cos(n∆ϕ)

Generalized Gaussian:

N × e
−
∣∣∣ dϕwϕ ∣∣∣γϕ−∣∣∣ dηwη ∣∣∣γη =⇒N = C2 × γϕγη

4wϕwηΓ
(

1
γϕ

)
Γ
(

1
γη

)
γ = 1: Exponential
γ = 2: Gaussian

Characterize peak by variance of generalized Gaussian:
σ2 = w2Γ(3/γ)

Γ(1/γ)

No attempt to give physical meaning to parameters of the
generalized Gaussian
Some bins around (∆ϕ,∆η) = (0,0) are excluded from the fit
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Fitting illustration
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Fitting illustration
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Width of the near-side peak

Characterize peak by the variance of the fit: σ2 = w2Γ(3/γ)
Γ(1/γ)
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Comparison to models

Study if interplay of flow and jets could cause the observed effects
AMPT (A Multi-Phase Transport model) [1]

Addresses non-equilibrium many-body dynamics
Has collective effects through partonic and hadronic interactions
Large longitudinal flow in AMPT ⇒ longitudinal broadening [2]
Different settings available to study the origin and the effect of flow

[1] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901

[2] G. L. Ma, S. Zhang, Y. G. Ma, X. Z. Cai, J. H. Chen, and C. Zhong, Eur. Phys. J. C57 (2008) 589–593
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AMPT
Settings:

string melting off, hadronic rescattering on
string melting on, hadronic rescattering on
string melting on, hadronic rescattering off
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Quantification of the broadening
Ratio of width in central over peripheral:

σCP,∆ϕ =
σ∆ϕ(0−10%)
σ∆ϕ(50−80%) , σCP,∆η =

σ∆η(0−10%)
σ∆η(50−80%)
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Moderate broadening in ∆ϕ

Much larger broadening in ∆η
Broadening most significant at intermediate pT
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Small difference between models in ∆ϕ, ∆η more constraining
String melting off, hadr. rescattering on describes data best

Note: none of AMPT settings describe absolute width better than 10% (see backup)
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Near-side depletion

In central collisions at low pT: depletion around (∆ϕ,∆η) = (0,0)
Per trigger yield is corrected for two-track inefficiencies
The area of the depletion is excluded from the fit

Characterized by Fit-Data
Total yield in %
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Near-side depletion

Depletion yield = Fit−Data
Total yield in %

Centrality (%)
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No depletion in higher pT, peripheral or pp
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Near-side depletion in AMPT
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Comparison to AMPT – near-side depletion
Depletion yield = Fit−Data

Total yield in %

Centrality (%)
10 20 30 40 50

D
ep

le
tio

n 
yi

el
d 

(%
)

0

0.5

1

1.5

2

2.5

3

3.5

4 c < 2 GeV/
T,assoc

p < 2 : 1 < 
T,trig

p1 < 

c < 2 GeV/
T,assoc

p < 3 : 1 < 
T,trig

p2 < 
c < 3 GeV/

T,assoc
p                       2 < 

c < 2 GeV/
T,assoc

p < 2 : 1 < 
T,trig

pAMPT: 1 < 

String melting on, rescattering on

String melting off, rescattering on

ALICE

 = 2.76 TeVNNsPb-Pb 

Depletion yield in AMPT almost independent of string melting
AMPT is in agreement with the data at the lowest pT
At higher pT none of the AMPT versions show depletion
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Summary of the comparison to AMPT

AMPT settings String melting & String melting Hadronic rescattering
Measurements hadronic rescattering

Evolution of width No No Yes
Absolute width 10% 10− 15% 20− 30%
Depletion Yes No Yes

With hadronic rescattering describes depletion and shape evolution
Absolute width is not described better than 10%

Monika Kofarago Near-side jet peak broadening in Pb-Pb collisions 16 / 18



Comparison to AMPT – explanation

Are observed effects described by elliptic and/or radial flow?
0–10% fitted with Blast-wave fit to extract expansion velocity
(π: 0.5 <pT < 1 GeV/c, K: 0.2 <pT < 1.5 GeV/c, p: 0.3 <pT < 2.0 GeV/c)

v2{2} was extracted with 0.2 <pT < 5 GeV/c

Monika Kofarago Near-side jet peak broadening in Pb-Pb collisions 17 / 18



Comparison to AMPT – explanation

Are observed effects described by elliptic and/or radial flow?
0–10% fitted with Blast-wave fit to extract expansion velocity
(π: 0.5 <pT < 1 GeV/c, K: 0.2 <pT < 1.5 GeV/c, p: 0.3 <pT < 2.0 GeV/c)

v2{2} was extracted with 0.2 <pT < 5 GeV/c

Sample βT v2{2}

AMPT string melting and hadronic rescattering 0.442 0.0412 ± 0.0002
AMPT string melting 0.202 0.0389 ± 0.0002
AMPT hadronic rescattering 0.540 0.0330 ± 0.0002
Data* 0.649 ± 0.022 0.0364 ± 0.0003
* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

With string melting or with hadr. rescattering describes v2{2}
βT is lower for all AMPT cases than for data
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AMPT string melting 0.202 0.0389 ± 0.0002
AMPT hadronic rescattering 0.540 0.0330 ± 0.0002
Data* 0.649 ± 0.022 0.0364 ± 0.0003
* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest v2{2} to data
Only version with hadronic rescattering

has depletion
follows the centrality and pT evolution of relative width
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Comparison to AMPT – explanation

Are observed effects described by elliptic and/or radial flow?
0–10% fitted with Blast-wave fit to extract expansion velocity
(π: 0.5 <pT < 1 GeV/c, K: 0.2 <pT < 1.5 GeV/c, p: 0.3 <pT < 2.0 GeV/c)

v2{2} was extracted with 0.2 <pT < 5 GeV/c

Sample βT v2{2}

AMPT string melting and hadronic rescattering 0.442 0.0412 ± 0.0002
AMPT string melting 0.202 0.0389 ± 0.0002
AMPT hadronic rescattering 0.540 0.0330 ± 0.0002
Data* 0.649 ± 0.022 0.0364 ± 0.0003
* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

⇓
Large βT is needed to describe depletion and evolution
Likely cause of the effects is radial flow
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Summary

Evolution of near-side peak shape towards low
pT and high centrality:

Small broadening in ∆ϕ
Significant broadening in ∆η
Depletion around (∆ϕ,∆η) = (0,0)
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ALICE, Pb-Pb
 = 2.76 TeVNNs

 0-10%

Comparison to AMPT:
None of the AMPT settings describe the absolute width
With only hadronic rescattering describes the evolution of the peak
With hadr. rescattering describes depletion, independent of string melting

Interpretation:
Strong longitudinal flow ⇒ longitudinal broadening
Driving factor for depletion and broadening is radial flow
Depletion and broadening caused by interplay of jets and collective medium

Thank you for your attention!
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BACKUP



Further details of the analysis

39 million Pb–Pb events at
√
sNN = 2.76 TeV

30 million pp events at
√
s = 2.76 TeV

|η| < 0.8
|zvtx| < 7 cm
Selection criteria on decay products: pair excluded if
minv < 4 MeV/c2, |minv −m(Λ)| < 5 MeV/c2 or
|minv −m(K 0

s )| < 5 MeV/c2

Selection criteria to remove two-track inefficiencies:
|∆η| > 0.02 and |∆ϕ∗| > 0.02 rad
Correction is done to remove distortion arising from a
dependence on η

Monika Kofarago Near-side jet peak broadening in Pb-Pb collisions 20



Systematic Uncertainties

Source σ∆ϕ σ∆η σCP,∆ϕ σCP,∆η Depletion yield

Track selection and efficiencies 1.0% 1.3% 20%
Small opening angles cut 0.7% 1.3% 5–10%
Neutral-particle decay cut 0.1% 0.2% 8–20%
Vertex range 1.0% 1.0% 5–10%
Pseudorapidity dependence 1.7% 4.1% 0.6% 2.5% 5–15%
Exclusion region 0.1% 1.0% 0.1% 1.5% 7–28%

Total 2.3% 4.5% 2.2% 3.6% 24-45%

Ranges indicate pT dependence
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AMPT settings

With string melting and with hadronic rescattering
Version v2.25t3
Parameter isoft = 4
Parameter ntmax = 150

With string melting and without hadronic rescattering
Version v2.25t3
Parameter isoft = 4
Parameter ntmax = 3

Without string melting and with hadronic rescattering
Version v1.25t3
Parameter isoft = 1
Parameter ntmax = 150
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Comparison to the STAR experiment
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√
sNN = 200 GeV, Au–Au collisions

Taken from Phys.Rev. C85 (2012) 014903

ALICE:
√
sNN = 2.76 TeV, Pb–Pb collisions

Results agree within 2σ in all bins
Values slightly higher at STAR in the central bins in ∆ϕ
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Comparison to MC – absolute width in peripheral
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None of the AMPT settings describe all pT bins
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Comparison to MC – absolute width in central
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Evolution of the near-side peak shape
High pT, peripheral
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Low pT, central
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Towards central collisions and low pT:
Peak broadens
Peak gets asymmetric (∆η > ∆ϕ)
Depletion around (∆ϕ,∆η) = (0,0) develops
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AMPT
Settings:

string melting off, hadronic rescattering on
string melting on, hadronic rescattering on
string melting on, hadronic rescattering off
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