Near-side jet peak broadening in Pb–Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$

Monika Kofarago

CERN, Utrecht University

on behalf of the ALICE Collaboration

25th September 2016 - Hard Probes

arXiv:1609.06643 arXiv:1609.06667

Physics motivation

- Goal: study interaction of jets with the medium
- Angular correlation measurements
 - Analysis done on a statistical basis
 - Subtraction of large fluctuating background possible
 - Low $p_{\rm T}$ measurement possible
 - Complementary tool to jet reconstruction
- Interactions would appear as modification of the near-side peak
- Modification of the jet-peak has been seen by STAR STAR Collaboration, Phys. Rev. C85 (2012) 014903

Theoretical aspects

ALICE

• Larger width in $\Delta\eta$ than in $\Delta\varphi$

 Interaction with longitudinal flowing medium Romatschke, Phys. Rev. C75 (2007) 014901 Armesto, Salgado, Wiedemann, Phys. Rev. C72 (2005) 064910 Armesto, Salgado, Wiedemann, PRL 93,242301 (2004)

- Interaction with turbulent color fields Majumder, Muller, Bass, Phys. Rev. Lett. 99 (2007) 042301
- Double hump-shape in the energy distribution of the jet Armesto, Salgado, Wiedemann - PRL 93,242301 (2004)

Analysis strategy

- Pb–Pb and pp data at $\sqrt{s_{NN}} = 2.76$ TeV
- Trigger and associated particle taken in certain p_T window
- Associated yield per trigger:

ALICE

Analysis strategy

- Pb–Pb and pp data at $\sqrt{s_{NN}} = 2.76$ TeV
- Trigger and associated particle taken in certain *p*_T window
- Associated yield per trigger:

ALICE

• Histograms background subtracted for illustration

• Shape is similar in pp and peripheral collisions

Monika Kofarago

Near-side jet peak broadening in Pb-Pb collisions

• Histograms background subtracted for illustration

• Peak: broader and asymmetric in central collisions

Monika Kofarago

Near-side jet peak broadening in Pb-Pb collisions

- Histograms background subtracted for illustration
- Depletion around $(\Delta \varphi, \Delta \eta) = (0,0)$ in central collisions at low $p_{\rm T}$

Monika Kofarago

Near-side jet peak broadening in Pb-Pb collisions

- Histograms background subtracted for illustration
- \bullet Peak is narrower at high $p_{\rm T}$

Monika Kofarago

Fitting technique

- The near-side is fitted to characterize its shape evolution
- Fit function: background + Generalized Gaussian
 - Background:

 $C_1 + \sum_{n=2}^4 2V_n \cos(n\Delta\varphi)$

• Generalized Gaussian:

$$N \times e^{-\left|\frac{d\varphi}{w_{\varphi}}\right|^{\gamma_{\varphi}} - \left|\frac{d\eta}{w_{\eta}}\right|^{\gamma_{\eta}}} \implies N = C_2 \times \frac{\gamma_{\varphi}\gamma_{\eta}}{4w_{\varphi}w_{\eta}\Gamma\left(\frac{1}{\gamma_{\varphi}}\right)\Gamma\left(\frac{1}{\gamma_{\eta}}\right)}$$

 $\gamma = 1$: Exponential $\gamma = 2$: Gaussian

- Characterize peak by variance of generalized Gaussian: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$
- No attempt to give physical meaning to parameters of the generalized Gaussian
- Some bins around $(\Delta \varphi, \Delta \eta) = (0,0)$ are excluded from the fit

Fitting illustration

Fitting illustration

• Characterize peak by the variance of the fit: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$

• Characterize peak by the variance of the fit: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$

• Width in $\Delta \varphi$ in 50–80% is equal to width in pp

• Characterize peak by the variance of the fit: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$

- Width in $\Delta \varphi$ in 50–80% is equal to width in pp
- Small increase at low p_{T} in $\Delta \varphi$ with centrality

• Characterize peak by the variance of the fit: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$

• Characterize peak by the variance of the fit: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$

• Width in $\Delta\eta$ in 50–80% is already larger than in pp

• Characterize peak by the variance of the fit: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$

- Width in $\Delta\eta$ in 50–80% is already larger than in pp
- ullet Very pronounced increase at low $p_{\rm T}$ in $\Delta\eta$

- Study if interplay of flow and jets could cause the observed effects
- AMPT (A Multi-Phase Transport model) [1]
 - Addresses non-equilibrium many-body dynamics
 - Has collective effects through partonic and hadronic interactions
 - Large longitudinal flow in AMPT \Rightarrow longitudinal broadening [2]
 - Different settings available to study the origin and the effect of flow

Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys.Rev. C72 (2005) 064901
 G. L. Ma, S. Zhang, Y. G. Ma, X. Z. Cai, J. H. Chen, and C. Zhong, Eur. Phys. J. C57 (2008) 589–593

ALICE

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Settings:

- $\bullet\,$ string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Monika Kofarago

ALICE

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Monika Kofarago

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

$$\sigma_{CP,\Delta\varphi} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{CP,\Delta\eta} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$$

$$\sigma_{CP,\Delta\varphi} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{CP,\Delta\eta} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$$

• Much larger broadening in $\Delta\eta$

$$\sigma_{CP,\Delta\varphi} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{CP,\Delta\eta} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$$

- Moderate broadening in $\Delta \varphi$
- Much larger broadening in $\Delta \eta$
- Broadening most significant at intermediate $p_{\rm T}$

$$\sigma_{CP,\Delta\varphi} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{CP,\Delta\eta} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$$

 $\sigma_{CP,\Delta\varphi} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}, \ \sigma_{CP,\Delta\eta} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

• Small difference between models in $\Delta \varphi$, $\Delta \eta$ more constraining

• String melting off, hadr. rescattering on describes data best

- Small difference between models in $\Delta arphi$, $\Delta \eta$ more constraining
- String melting off, hadr. rescattering on describes data best
- Note: none of AMPT settings describe absolute width better than 10% (see backup)

Near-side depletion

- In central collisions at low $p_{\rm T}$: depletion around $(\Delta \varphi, \Delta \eta) = (0,0)$
- Per trigger yield is corrected for two-track inefficiencies
- The area of the depletion is excluded from the fit

ALICE

Near-side depletion

- In central collisions at low $p_{\rm T}$: depletion around $(\Delta \varphi, \Delta \eta) = (0,0)$
- Per trigger yield is corrected for two-track inefficiencies
- The area of the depletion is excluded from the fit
- \bullet Characterized by $\frac{\mathsf{Fit-Data}}{\mathsf{Total yield}}$ in %

ALICE

Near-side depletion

 \bullet Depletion yield = $\frac{Fit-Data}{Total yield}$ in %

• No depletion in higher $p_{\rm T}$, peripheral or pp

Near-side depletion in AMPT

Near-side depletion in AMPT

Comparison to AMPT – near-side depletion

- Depletion yield in AMPT almost independent of string melting
- ullet AMPT is in agreement with the data at the lowest p_{T}
- At higher $p_{\rm T}$ none of the AMPT versions show depletion

ALICE

ALICE

AMPT settings Measurements	String melting & hadronic rescattering	String melting	Hadronic rescattering
Evolution of width	No	No	Yes
Absolute width	10%	10-15%	20 - 30%
Depletion	Yes	No	Yes

- With hadronic rescattering describes depletion and shape evolution
- \bullet Absolute width is not described better than 10%

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 < $p_{\rm T}$ < 5 GeV/c

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 < $p_{\rm T}$ < 5 GeV/c

Sample	β_{T}	<i>v</i> ₂ {2}
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

- With string melting or with hadr. rescattering describes v_2 {2}
- $\beta_{\rm T}$ is lower for all AMPT cases than for data

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- $v_2\{2\}$ was extracted with 0.2 < $p_{\rm T}$ < 5 GeV/c

Sample	β_{T}	v ₂ {2}
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest $v_2\{2\}$ to data

- Only version with hadronic rescattering
 - has depletion
 - $\bullet\,$ follows the centrality and $p_{\,\rm T}$ evolution of relative width

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- v_2 {2} was extracted with 0.2 < $p_{\rm T}$ < 5 GeV/c

Sample	$eta_{ m T}$	<i>v</i> ₂ {2}
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest $\beta_{\rm T}$ to data

- Has depletion
- ullet Follows the centrality and p_{T} evolution of relative width

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- $\bullet~v_2\{2\}$ was extracted with 0.2 $<\!\!p_{\rm T}<5$ GeV/c

Sample	β_{T}	<i>v</i> ₂ {2}
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

* From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

₩

- $\bullet\,$ Large β_T is needed to describe depletion and evolution
- Likely cause of the effects is radial flow

- Evolution of near-side peak shape towards low $p_{\rm T}$ and high centrality:
 - $\bullet\,$ Small broadening in $\Delta\varphi$
 - $\bullet\,$ Significant broadening in $\Delta\eta$
 - Depletion around $(\Delta \varphi, \Delta \eta) = (0,0)$
- Comparison to AMPT:

- None of the AMPT settings describe the absolute width
- With only hadronic rescattering describes the evolution of the peak
- With hadr. rescattering describes depletion, independent of string melting
- Interpretation:
 - $\bullet~{\rm Strong}$ longitudinal flow \Rightarrow longitudinal broadening
 - Driving factor for depletion and broadening is radial flow
 - Depletion and broadening caused by interplay of jets and collective medium

Thank you for your attention!

ALICE

BACKUP

- 39 million Pb–Pb events at $\sqrt{s_{NN}} = 2.76$ TeV
- 30 million pp events at $\sqrt{s} = 2.76$ TeV
- $|\eta| < 0.8$
- $|z_{\mathrm{vtx}}| < 7 \,\mathrm{cm}$
- Selection criteria on decay products: pair excluded if $m_{\rm inv} < 4 \text{ MeV}/c^2$, $|m_{\rm inv} m(\Lambda)| < 5 \text{ MeV}/c^2$ or $|m_{\rm inv} m(K_s^0)| < 5 \text{ MeV}/c^2$
- Selection criteria to remove two-track inefficiencies: $|\Delta\eta|>0.02$ and $|\Delta\varphi^*|>0.02$ rad
- \bullet Correction is done to remove distortion arising from a dependence on η

ALICE

Source	$\sigma_{\Delta\varphi}$	$\sigma_{\Delta\eta}$	$\sigma_{CP,\Delta \varphi}$	$\sigma_{CP,\Delta\eta}$	Depletion yield
Track selection and efficiencies	1.0)%	1.3	3%	20%
Small opening angles cut	0.7	7%	1.3	3%	5–10%
Neutral-particle decay cut	0.1	L%	0.2	2%	8–20%
Vertex range	1.0)%	1.0)%	5–10%
Pseudorapidity dependence	1.7%	4.1%	0.6%	2.5%	5–15%
Exclusion region	0.1%	1.0%	0.1%	1.5%	7–28%
Total	2.3%	4.5%	2.2%	3.6%	24-45%

• Ranges indicate $p_{\rm T}$ dependence

- With string melting and with hadronic rescattering
 - Version v2.25t3
 - Parameter isoft = 4
 - Parameter ntmax = 150
- With string melting and without hadronic rescattering
 - Version v2.25t3
 - Parameter isoft = 4
 - Parameter ntmax = 3
- Without string melting and with hadronic rescattering
 - Version v1.25t3
 - Parameter isoft = 1
 - Parameter ntmax = 150

Comparison to the STAR experiment

Taken from Phys.Rev. C85 (2012) 014903

- ALICE: $\sqrt{s_{NN}} = 2.76$ TeV, Pb–Pb collisions
- Results agree within 2σ in all bins
- ullet Values slightly higher at STAR in the central bins in $\Delta arphi$

Monika Kofarago

Comparison to MC – absolute width in peripheral

• None of the AMPT settings describe all $p_{\rm T}$ bins

Comparison to MC – absolute width in central

 $\Delta \eta$

• None of the AMPT settings describe all $p_{\rm T}$ bins

Evolution of the near-side peak shape

Towards central collisions and low $p_{\rm T}$:

- Peak broadens
- Peak gets asymmetric $(\Delta \eta > \Delta \varphi)$
- Depletion around $(\Delta \varphi, \Delta \eta) = (0,0)$ develops

AMPT

ALICE

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

